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Abstract:

In the context of ‘dual carbon’, China's economic and social progress is gradually transitioning from a high-
speed growth mode to a high-quality growth mode, and it is particularly important to promote the green and
low-carbon energy transition and the high-quality development of energy. As the political and cultural centre
of China, Beijing needs to play an exemplary leading role, and predicting the development trend of Beijing's
energy footprint is of good research value. Taking Beijing as the research object, this paper firstly accounts for
the energy footprint in the past years, and then quantitatively analyses the impact of influencing factors on the
change of energy footprint based on the LMDI model. Finally, a forecast model based on GRU deep learning
neural network was constructed, three scenarios were set up, and the time of peak energy footprint was
predicted for each scenario. The results show that the four factors of energy consumption structure, energy
consumption intensity, economic development level, and population size all have influence on the energy
footprint of Beijing, and that the energy footprint of Beijing will peak in 2026 under the baseline scenario, with
the two scenarios of low-footprint and high-footprint advancing or delaying the time.
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INTRODUCTION

As human civilization progresses and socioeconomic conditions rapidly evolve, ecological problems such as
energy depletion, resource scarcity, environmental pollution, and climate change have intensified globally, and
the ecological environment has faced growing adverse effects from human activities.Since 1970, human beings'
ecological footprint has begun to exceed the earth's regeneration rate, gradually affecting the earth's health and
human beings' future, and it is expected that by the middle of the twenty-first century, human consumption of
natural resources around the world is projected to surpass the earth's ecological carrying capacity by 2 to 6 fold,
and ecological and environmental problems will become increasingly serious [1].

Energy, as the fundamental material underpinning for modern socioeconomic development, is critical for the
survival of human civilization. However, a disparity between global economic and social progress and energy use
has steadily surfaced. As Beijing strengthens its core functions as the capital city, transforms its economic
structure, and optimizes its regional layout, as well as demand for green energy, the city's energy supply will
become more complex and diverse, making energy supply analysis and forecasting research critical to the city's
faster and better economic transformation. The energy footprint, as a component of the ecological footprint, serves
as a crucial index of occupancy and the influence of energy use on the environment, and it can serve as a reference
point for regional energy policy and sustainable development planning.

Because of the imposition of global energy conservation and emission control policies and changes in energy
structure, scholars worldwide have conducted extensive research on energy footprint. They have primarily focused
on the measurement methodology and the analysis of spatial and temporal differences. Using the energy-value
conversion method, Zhang calculated the energy footprint of China and its provinces, examined regional
variations, and investigated the causes and sources using the Gini coefficient [2]. To assess the energy-based
ecological impact and load-bearing capacity of provinces along the Silk Road from both a temporal and spatial
perspective, Yang developed an energy footprint fairness evaluation model [3]. Li divides the ecological surplus
and deficit zones, examines regional variations, and measures the energy footprints of different categories in China
using the energy value conversion method and the carbon absorption substitution theory [4]. Using the per capita
energy footprint and center of gravity model, Zhao examined China's energy use efficiency and spatial distribution
characteristics, highlighting the issue of production-consumption mismatch and the trend of less in the south and
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more in the north [5]. In order to increase the accuracy of the computation of Galicia's energy ecological footprint,
Penela added the electricity trade adjustment [6]. In order to consider the energy footprint of Jilin Province, Fang
expanded the research scope of the conventional model, refined the carbon absorption parameters, and built an
enhanced model based on global net primary productivity [7]. Although factor decomposition analysis is rarely
used in conjunction with the energy footprint, the aforementioned studies employ it to describe regional energy
usage, highlight spatial and temporal disparities, and offer policy recommendations.

Researchers have employed a variety of techniques, such as regression models, gray models, and system dynamics
models, to forecast the future development scenarios of the energy footprint. These studies are primarily based on
historical information. After measuring Heilongjiang Province's ecological carrying capacity from 2000 to 2015,
Liang decided to incorporate the moving average autoregressive model (ARIMA) model to forecast these metrics
for the ensuing ten years [8]. Li improved the energy-value ecological footprint model and applied the grey model
to forecast Tibet and its prefectures for sustainability over the period 2015-2024 [9]. Fang developed an energy
footprint system dynamics prediction model under the constraints of land use (LUCC) based on an analysis of
Jilin Province's energy footprint and supply changes of all categories of land use from 1994 to 2008, he projected
the scenarios of energy footprint changes in Jilin Province over the next 15 years [10]. Furthermore, predicting
carbon emissions is a crucial component of studying energy footprints. Both domestic and international
researchers have studied carbon emission prediction and its influencing factors extensively. Yan utilized the
STIRPAT model to forecast multiple development scenarios and investigate how population, energy intensity,
and additional factors influence carbon emissions in the Shandong Peninsula [11]. Xu forecasted the pattern of
carbon emissions over time from home energy use between 2016 and 2025 using the ARIMA model [12]. Zhang
forecasted Shandong Province's transportation-related carbon emissions using the GM (1,1) model, and the
findings indicated that they will continue to rise [13]. To forecast changes in Guangdong Province's carbon
emissions, Xie developed a system dynamics model [14]. Some researchers also attempt to create more intricate
prediction models. For example, Liu combined PCA and SVR models to forecast China's CO2 emissions [15],
and Qiao suggested a hybrid method based on genetic algorithms and lion swarm optimization to forecast carbon
emissions of different nations [16]. Acheampong uses an artificial neural network model to examine how various
parameters affect the intensity of carbon emissions. Hu used the BP neural network technique to creat a carbon
emissions forecasting model from urban home consumption in Xi‘an [17]. Duan leveraged a BP neural network
to examine China's plan for hitting the carbon emissions peak in 2030 [18]. Wang proposed the MNGM-ARIMA
and MNGM-BPNN model in combination to anticipate the direction of carbon emissions, the US, and India
between 2019 and 2030 [19]. Fewer research studies have directly predicted energy footprints, whereas the
aforementioned scholars' research has mostly concentrated on the direct prediction of carbon emissions using a
range of techniques like time series, system dynamics modeling, support vector machines, neural networks, etc.

There is an immediate need to further combine the energy footprint and factor decomposition analysis, use a more
sophisticated prediction model, and deepen the prediction research on the shift in the regional energy footprint
over time. In summary, the current research on energy footprint has become a hot topic for scholars both
domestically and internationally, but the research on direct prediction of energy footprint is still relatively small,
especially in the factor decomposition and dynamic evolution analysis of the exploration is not yet sufficient.
Thus, the focus of this paper is Beijing's energy footprint, which is the subject of a systematic analysis of its
driving factors and accounting methods. The GRU (Gated Recycling Unit) deep-learning model is used to make
multi-scenario forecasts of the energy footprint's development trend, and the carbon peak time and energy
consumption of Beijing are evaluated under various policy and technological scenarios. The study offers scientific
justification and statistical support for Beijing's energy planning and carbon-neutral pathway development.

ACCOUNTING FOR BEIJING'S ENERGY FOOTPRINT
Net Primary Productivity-based Energy Footprint Accounting Methodology

The traditional approach to energy footprint accounting is to start from the viewpoint of carbon sequestration
substitution, assuming that the carbon fixing capacity of the land is a fixed value, and first calculating carbon
emissions based on energy consumption, and then measuring the energy footprint in terms of the area of soil
corresponding to absorb the carbon emissions resulting from the energy consumption. However, it ignores carbon
sequestration in water bodies and other land types, which can bias the results. In addition, the Earth's carbon
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sequestration capacity can be calculated using biological productivity, which gives low values by calculating the
average carbon sequestration capacity of biota.

In response to the shortcomings and deficiencies of traditional energy footprint methods, Kitze et al. have
proposed two ideas for improving energy footprint after their study [20]:

(1) On the basis of calculating the forest land's carbon sequestration capacity, we evaluate the capacity of other
land types, such as water bodies and arable land, is also taken into account, so as to provide a more comprehensive
and integrated measure of the global carbon sequestration capacity.

(2) Calculation and measurement of the Earth's carbon absorption capacity using biological productivity enables
real-time, accurate and detailed information on the ecological effects of human production and life.

Based on the above two concepts, this paper introduces the concept of net primary productivity (NPP) on the basis
of traditional energy footprint accounting, and constructs an energy footprint accounting method based on NPP.

(1) Accounting for regional net primary productivity. Regional net primary productivity is calculated as follows:

m
_ Zi=1 Ai-NPP;
A

NPP =Yy w; - NPP 1)

Where NPP is the regional net primary productivity(tC/hm?); i denotes different land use types; Ai denotes the
size of land type i in the region(hm?); NPP; is the average of the global net primary productivity(tC/hm?) of land
type i; A is the overall land area of the region (hm?); wi is the land use share.

(2) Accounting for carbon emissions. Each energy source’s carbon emission coefficient is meticulously explained
in the Guidelines for National Greenhouse Gas Emission Inventories, which are widely recognized and applied
by various research institutes and scholars. Therefore, this study adopts the carbon emission coefficient approach
to account for the carbon emissions from energy consumption, and the specific calculation methods are as follows:

CE; = C; - CEE; = C; - CV; - CC; - €O )

Where CE; is the carbon emission of energy category j; C; is the consumption of energy category j; CEE; is the
carbon emission coefficient (tC/t) of energy category j; CV;j is the average low-level heat generation (TJ/t) of
energy consumption category j; CCi; is the carbon content per unit of calorific value (tC/TJ) of energy consumption
category j; O; is the carbon oxidation rate of energy consumption category j.

(3) Accounting for the energy footprint. The energy footprint of energy consumption in the region is calculated
by combining the results of the accounting of regional net primary productivity with the accounting of carbon
emissions, as described below:

n CE]' _wn Qj-CEEj _ymn Qj-NCVj'CCj-Oj

EEF = Zj:lNPP T &j=1 Npp j=1 NPP ®)

Where EEF represents the energy footprint of the region (hm?); NPP is the regional net primary productivity
(tC/hm?); CE; is the carbon emissions from energy type j.

Accounting for Beijing's Energy Footprint
Table 1. Global average net primary productivity by land-use type (tC/hm?)

Arable land Forest land | Grassland Construction land Water
Net primary productivity 4.243 6.583 4.835 0.997 5.344

Based on the relevant data published by Venetoulis on the global net primary productivity of each land type (Table
1), the comprehensive net primary productivity of Beijing was accounted for in combination with the area of types
of land in Beijing. This study considers six land types in Beijing: arable land, garden land, forest land, grassland,
construction land and water, and the data on the land use status in the past years are obtained from the National
Bureau of Statistics (NBS) and the Beijing Municipal Statistical Yearbook, and the specific data are presented in
inin Table 2.
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Table 2. Land use situation in Beijing, 1985-2010

Year Arable land Forest land Grassland Water Construction land |Low production
1985 33.59% 43.58% 7.9% 4.94% 8.67% 1.32%
2000 29.39% 44.48% 7.62% 4.09% 13.59% 0.83%
2010 24.89% 45.41% 7.33% 2.7% 19.04% 0.63%

Based on the above data and equation (2), the regional integrated net primary productivity of Beijing was
calculated in 1985, 2000 and 2010, and the results can be found in Table 3.

Table 3. Calculations of Integrated Net Primary Productivity in Beijing (tC/hm?)

Year 1985 | 2000 | 2010
Regional integrated net primary productivity 5.04 4.90 4.74

The relevant data for the carbon emission accounting process come from the China Energy Statistics Yearbook,
the coefficient of calorific value of combustion (NCV) of various types of energy sources the carbon content per
unit of calorific value (CC), the rate of oxidation of carbon (O), and the coefficient of carbon emission (CEE), and
the collation of the above data is shown in Table 4. Accordingly, the carbon emission factors in Beijing from 1980
to 2020 are accounted for.

Table 4. Conversion factors for various types of energy

Energy type NCV CC 0 CEE
Coal 0.021(TJN) 27.2(tC/TJ) 0.94 0.537(tC/t)
Petroleum 0.042(TJN) 20.1(tC/TJ) 0.98 0.827(tCht)
Natural gas 0.039x10-3(TJ/m3) 17.2(tC/TJ) 0.99 0.664x10-3(tC/m3)
Hydroelectricity - - - 0.058x10-3(tC/kW-h)

Based on the results of calculating the regional net primary productivity of Beijing in 1990, 2000, and 2010 and
the carbon emissions of each type of energy in Beijing from 1980 to 2020, the calculation can be carried out by
using the energy footprint equation (4).

CEi _ ©on QiCEE;i _ on QiNCV{CCiO;
Tai=1 npp

EEF = 3"

i=lypp — “i=1 pNpp

(4)

By using equation (4) to account for the energy footprint of Beijing from 1980 to 2020 (in which the net primary
productivity from 1980 to 1990 is replaced by 1985 data, the net primary productivity from 1991 to 2005 is
replaced by 2000 data, and the net primary productivity from 2006 to 2020 is replaced by 2010 data), the results
of the energy footprint of Beijing over the years are as follows are shown in Table 5.

The results indicate that the average annual growth rate of Beijing's energy footprint over the past 41 years has
been 3.37%, and that the per capita energy footprint has increased from 0.28 hectares per capita in 1980 to 0.44
hectares per capita in 2020, an increase of 0.56 times; The value of energy footprint output increased by 67.86
times; Beijing's energy footprint showed a deficit from 1980 to 2020, and the deficit level increased from 0.10 ha
per capita in 1980 to 0.36 ha per capita in 2020, with a 2.66-fold increase in the deficit level, which is an expanding
trend. From the evolutionary analysis, the current energy consumption in Beijing is increasing the pressure on the
ecological environment and the level of ecological security is low, so it is essential to enhance the efficiency of
energy use, change the composition of energy consumption, and propel the energy strategy of green, efficient and
sustainable development.
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Table 5. Beijing's energy footprint, 1980-2020

Year Energy footprint(hm?) Remderg1 ggsp:rllgt)lon (ten Energy foo(trﬁ)rrr:g)t per capita
1980 2535068.45 904.3 0.28
1981 2528291.26 919.2 0.28
1982 2551944.98 935.0 0.27
1983 2637390.76 950.0 0.28
1984 2849211.23 965.0 0.30
1985 2938643.58 981.0 0.30
1986 3189266.80 1028.0 0.31
1987 3289994.48 1047.0 0.31
1988 3471782.68 1061.0 0.33
1989 3525734.45 1075.0 0.33
1990 3600815.10 1086.0 0.33
1991 3921163.15 1094.0 0.36
1992 4078856.17 1102.0 0.37
1993 4457182.88 1112.0 0.40
1994 4622794.68 1125.0 0.41
1995 4824041.00 1251.1 0.39
1996 5098740.87 1259.4 0.40
1997 5077851.67 1240.0 0.41
1998 5199227.50 1245.6 0.42
1999 5333710.29 1257.2 0.42
2000 5657834.30 1363.6 0.41
2001 5774158.49 1385.1 0.42
2002 6056640.62 1423.2 0.43
2003 6346222.34 1456.4 0.44
2004 7017134.45 1492.7 0.47
2005 7539091.50 1538.0 0.49
2006 8343869.64 1601.0 0.52
2007 8881417.99 1676.0 0.53
2008 8940910.07 1771.0 0.50
2009 9284579.26 1860.0 0.50
2010 8986680.82 1961.9 0.46
2011 9040111.70 2023.8 0.45
2012 9275817.96 2077.5 0.45
2013 9501633.49 2125.4 0.45
2014 9653302.95 2171.1 0.44
2015 9613114.00 2188.3 0.44
2016 9774110.02 2195.4 0.45
2017 10016614.42 2194.4 0.46
2018 10272995.59 2191.7 0.47
2019 10400967.14 2190.1 0.47
2020 9555614.42 2189.0 0.44

ANALYSIS OF THE MECHANISMS OF BEIJING'S ENERGY FOOTPRINT INFLUENCING
FACTORS

Construction of the Factor Decomposition Model

The energy footprint actually expresses the correlation between energy consumption and the purification capacity
of land resources. As energy consumption is associated with macroeconomic development, changes in the energy
footprint are affected by various factors, mainly including economic growth, industrial structure, demographic
changes, and so on.

The more common approaches to analyzing the factors affecting the energy footprint are the STIRPAT model
[21-22] and the Logarithmic Mean Divisia Index Method (LMDI) [23-24] et al. Among them, the LMDI index
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decomposition method is more prevalent in the study of energy footprint impact mechanism, and there is no
residual after factor decomposition, so the LMDI factor decomposition model will be used to decompose and
analyze the influence mechanism of Beijing's energy footprint.

According to the existing research on the impact mechanism of energy footprint [25-26] and the accounting
method of energy footprint, taking into account the actual situation of energy consumption in Beijing, this paper
decomposes the energy footprint into six driving factors, namely, carbon emission factor, energy consumption
structure, energy consumption intensity, level of economic development, population size, and land carbon
sequestration capacity, and constructs the LMDI decomposition and analysis model of the impact mechanism, and
the specific model is as follows:

CE, CE E E GDP 1

EEF=) — =) —x—x X x P x
~NPP 4“E E GDP P NPP ®)

=ECxESxXElI xGxPxS

Where EEF denotes the energy footprint; CE; denotes the carbon emission of the ith class of energy; NPP denotes
the regional net primary productivity; E; is the consumption of the ith category of energy; E denotes the total
energy consumption; GDP denotes the gross regional product; The specific meaning of each remaining indicator
is shown in Table 6.

Table 6. Names and meanings of variables influencing Beijing's energy footprint

Symbol Variable name Variable meaning
EC Energy carbon emission factor Energy carbon emissions / Energy consumption
ES Energy consumption structure Energy consumption / Total energy consumption
El Energy consumption intensity Total energy consump'zlcca)gllp)Gross regional product
G The level of economic development Gross regional product (GDP) / Total population
P Population size Total population
S Land carbon sequestration capacity 1/ Regional net primary productivity

Using the LMDI decomposition model, the value of the change in the energy footprint can be decomposed into
the following six indicators, and the decomposition equation is shown below:

AEEF = EEF' — EEF® = AEC + AES + AEI + AG + AP + AS (6)

Where AEEFrepresents the combined effect of changes in the energy footprint; EEFtrepresents the energy
footprint in the target year; EEF® represents the energy footprint in the base year; and
AEC,AES,AEI,AG,AP,ASrepresents the change value of the factors.

The study assumes that the carbon emission factors of different energy sources remain essentially constant, i.e.,
the contribution of the energy carbon emission factors, so this paper does not take into account the impact
relationship of the energy carbon emission factors in the decomposition analysis of the impact mechanism; The
land carbon sequestration capacity is based on the data related to land use in Beijing, using 1985, 2000 and 2010
data instead. so the land carbon sequestration capacity is not included in the decomposition analysis of the impact
mechanism. Rewrite equation (6) as:

AEEF = AES + AEI + AG + AP @)

According to the LMDI decomposition analysis method, the sum of absolute changes in each driver is equal to
the total change, and the decomposition effect of each factor is shown in equation (8):
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Among them, EEF}is the energy footprint of type i in year t; EEF is in the base period. ES},EI},G},P}
respectively represent the value of factors in year t; while E Sl-O,E IL-O,GL-O,PL-0 respectively represent the value of

factors in the base period.

The contribution rate of each driver, i.e. the proportion of each factor's change to the total change, can more
directly show the direction and size of the role of each driver on Beijing's energy footprint, in order to further
reflect the role of each driver, the contribution rate on the variation of the energy footprint is calculated, see
equation (9):

= f(AEEF) AES
Ngs = f AEEF
= f(AEEF) AET
ngr = f AEEF
AG
- 9
Ng f(AEEF)AEEF (9)
= f(AEEF 4p
=1 ) JEEF

1,AEEF =0
fAEEF) = {—1,AEEF <0

Where 7Mgs, NEgr, Mg, Np represent the contribution of value of factors to the change of energy footprint. When
1 = 0, t means that the corresponding driver promotes the increase of energy footprint; When 1 < 0, it means
that the corresponding driver inhibits the increase of energy footprint; f (AEEF) indicates the direction of the

change of energy footprint, and its value is positive if the energy footprint increases, and its value is negative if
the energy footprint decreases.

Decomposition Analysis of Energy Footprint Drivers in Beijing

According to the decomposition analysis model of Beijing's energy footprint drivers based on LMDI, the
contribution value and contribution rate of each factor to the change of Beijing's energy footprint are calculated.
The results of energy footprint influence mechanism decomposition analysis can be found in Table 7 and Table
8. Overall, the contribution of the effect of the level of economic development and the effect of population size to
the energy footprint of Beijing during the period 1981-2020 is positive in all time periods, indicating that both can
boost the increase of the energy footprint, which is primarily accounts for the growth of the energy footprint of
Beijing. Comparing the data in Tables 7 and 8, it can be seen that compared with the level of economic
development, the effect of population size on the increase of energy footprint is limited, and the influence of the
level of economic development on the energy footprint is more obvious, indicating that the economic development
is the most crucial factor.

From the combined effect of the four factors, the combined effect of each time period during 1981-2015 is positive,
indicating that the energy footprint of Beijing was in a continuous growth state during 1981-2015, and the
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combined effect during 2016-2020 is negative, indicating that the energy footprint of Beijing was in a declining
trend during 2016-2020.

Table 7. Results of Decomposition Analysis of Energy Footprint Impact Mechanisms in Beijing 1981-2020

Value of contribution of factors to energy footprint (ten thousand hm?)
Time period Energy_ Energy_ Level of economic| Population size -
consumption _consumption develo t effect fect Synergistic effect
pment effec effec
structure effect intensity effect
1981-1985 2.84 -132.01 150.78 23.04 44.64
1986-1990 1.40 -157.73 192.28 34.60 70.55
1991-1995 -10.54 -370.23 424.68 62.20 106.10
1996-2000 6.58 -334.95 375.11 47.16 93.91
2001-2005 -15.41 -332.43 444.88 81.18 178.22
2006-2010 7.80 -410.42 340.20 167.26 104.83
2011-2015 -81.41 -544.37 451.23 221.85 47.30
2016-2020 -20.62 -356.94 351.04 0.30 -26.22

Table 8. Results of Decomposition Analysis of Energy Footprint Impact Mechanisms in Beijing 1981-2020

Contribution of factors to energy footprint (%)
Time period | Energy consumption | Energy consumption Level of economic L
strgu)gture effepct in?gnsity effee;t development effect Population size effect

1981-1985 6.37 -295.70 337.73 51.60
1986-1990 1.98 -223.58 272.55 49.05
1991-1995 -9.94 -348.94 400.25 58.62
1996-2000 7.01 -356.69 399.46 50.22
2001-2005 -8.65 -186.53 249.63 45.55
2006-2010 7.44 -391.50 324.52 159.55
2011-2015 -172.12 -1150.95 954.02 469.04
2016-2020 -78.64 -1361.38 1338.88 1.14

The contribution of energy consumption intensity to the energy footprint is negative in all time periods, indicating
that it is the main factor inhibiting the growth of the energy footprint. The contribution of energy consumption
structure has both positive and negative values, with the overall negative value in recent years, indicating that
with the shift of energy consumption structure in recent years, the application of clean energy sources, such as
wind and water, has effectively suppressed the continuous growth of Beijing's energy footprint.

EXAMPLE ANALYSIS OF GRU PREDICTION OF BEIJING'S ENERGY FOOTPRINT
Construction of GRU Neural Network Model

In 2014, scholars Cho et al. proposed the Gated Recurrent Unit (GRU) neural network model by optimizing and
adjusting the structure inside the neurons on the basis of the LSTM neural network.

This study selects five driving factors, namely energy consumption structure, energy consumption intensity,
economic development level, population size, land carbon sequestration capacity, and the time series of the energy
footprint itself, as well as a total of six variables as inputs to the neural network, to predict and analyse the energy
footprint of Beijing. In terms of output variables, the time series of energy footprint was used as the output variable.

In this study, input and output variables were pre-processed using the Z-value standardisation method and raw
data were processed according to the time step = 5. The Adaptive Moment Estimation (AME) algorithm was used
for the optimization of the neural network parameters, and the gradient updating rule is given in equation (10).
Finally, the Keras deep learning application programming interface (API) in the Python environment was used
for model construction.

210
Vol: 2024 | Iss: 11| 2024



Computer Fraud and Security
ISSN (online): 1873-7056

Ory1 =0 ——m,
v t¢
m Ut

e

(10)
m

Where 6,0, 1are the network parameter values before and after the gradient descent, andi,, D, are the first and
second order moment values of the gradient estimates, respectively.

Beijing Energy Footprint Prediction based on Fully Connected Neural Networks

To test the validity of the Beijing energy footprint prediction model based on GRU neural network, the fully
connected neural network is used for comparative analysis. Using the energy footprint related data from 1980 to
2020, to carry out a fully-connected neural network containing three implicit layers, and to carry out an example
analysis.

Training and validation loss

—— Training loss
0.30 +

0.25 ~

0.20 4

0.15 ~

0.10 4

0.05 ~

it amee T

0.00 4

T T T T T
0 25 50 75 100 125 150 175 200

Figure 1. Fully connected neural networks training set error

Table 9. Fully connected neural network output values for the test set versus actual data values

Year Fully connected neural network | Actual energy footprint data Relative error
output values for the test set (hm?) value (hm?)
2015 9693513 9613114 0.84%
2016 9726501 9774110 0.49%
2017 9760807 10016614 2.55%
2018 9923152 10272995 3.41%
2019 10080278 10400967 3.08%
2020 10119462 9555614 5.90%

The 41 data sets were split into a training set and a test set in the ratio of 35:6, the evaluation index of the network
adopts the mean square error, the optimizer chooses Adam optimization algorithm, the input data of the network
is the tensor with the shape of [5, 35], and the test set is the tensor with the shape of [5, 6]. After 200 iterations,
the training results of the neural network model are obtained, the mean square error (MSE) of the final training
set is 0.0093, and the change of the training set error with the number of iterations can be seen in Figure 1; the
MSE of the test set is 0.0148, and the comparison of the neural network output values of the test set with the actual
data values is shown in Table 9 and Figure 2.
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Figure 2. Fully connected neural network output values for the test set versus actual data values
Energy Footprint Prediction of Beijing based on GRU Neural Network

In the energy footprint prediction model utilizing GRU neural network, the energy footprint related data from
1980 to 2020 are used, and the pre-processed data are separated into the training set and the data set in a ratio of
6 to 1, and the constructed GRU neural network is used to carry out instance analysis of energy footprint related
data. The neural network related parameters are shown in Table 10.

Table 10. Parameters related to the GRU neural network model

Parametric Parameter value
loss mean_squared_error
optimizer adam
epochs 200
batch_size 1
verbose 2

Training and validation loss

0.77 —— Training loss
0.6
0.5 4
0.4
0.3
0.2 4

N

0.0

T T T T T
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Figure 3. GRU neural network training set error

During the analysis of the GRU neural network model example, the GRU neural network is iterated using the data
set with the relevant parameters, the input data of the network is the tensor with the shape [5, 6, 30] and the test
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set is the tensor with the shape [5, 6]. After 200 iterations, the training results of the neural network model are
obtained as shown in Figure 3, Figure 4 and Table 11.

Table 11. GRU neural network output values for the test set versus actual data values

Year GRU neural network output values| Actual energy footprint data Relative error
for the test set (hm?) value (hm?)
2015 9749325 9613114 1.42%
2016 9907959 9774110 1.37%
2017 10080405 10016614 0.64%
2018 10301844 10272995 0.28%
2019 10467181 10400967 1.89%
2020 9751515 9555614 2.05%

The comparison of the neural network output values of the test set with the actual data values is shown in Table
11 and Figure 4, from the relative error term in Table 11, the test set's relative error peaks at 2.05%, and the
relative error reaches a minimum of 0.28%, i.e., the prediction accuracy of the test set is as low as 97.95% and as
high as 99.72%, and the GRU neural network model performs well on the data of the test set.

10600000
10400000
10200000
10000000
9800000
9600000
9400000
9200000

9000000
2015 2016 2017 2018 2019 2020

—+—GRU neural network output values for the test set
Actual energy footprint data value

Figure 4. GRU neural network output values for the test set versus actual data values
Comparative Analysis of Prediction of GRU Neural Network and Fully Connected Neural Network

For the fully connected neural network model, the mean square error is 0.0093 for the training set and 0.0148 for
the test set in terms of training error; the MSE of the training set of the GRU neural network model is 0.0012 and
that of the test set is 0.0029, and the MSE of the training and test sets of the GRU neural network model is smaller
than that of the fully connected neural network model.

In terms of the test set neural network output values, a comparison of the test set data output values on the fully
connected neural network model and the GRU neural network model is shown in Table 12, which shows that the
relative error of the test set for the fully connected neural network model is a maximum of 5.90% and a minimum
of 0.49%, while that of the test set for the GRU neural network model is a maximum of 2.05% and a minimum of
0.28%. Looking at the 2015-2020 data values as a whole, the relative error of the GRU neural network model is
smaller than that of the fully connected neural network model.

From the analysis of training error and test set in both neural network output values, it is observed that the Beijing
energy footprint model based on GRU neural network has a smaller error, better performance, and better effect
on the prediction of Beijing's energy footprint from 2015 to 2020; In contrast, the projection model of Beijing's
energy footprint based on fully-connected neural networks has a larger error and relatively poorer prediction
results. Therefore, this paper will adopt the Beijing energy footprint prediction model based on the GRU neural
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network model to further predict the future energy footprint of Beijing, which will serve as a reference and basis
for the energy planning of Beijing as well as the realisation of the ‘dual-carbon’ goal of Beijing.

Table 12. Comparison of test set data output values

Actual energy | Fully connected neural network model GRU neural network model

Year footprint data |Output values for the Relative error Output values for Relative error
value (hm?) test set (hm?) the test set (hm?)

2015 9613114 9693513 0.84% 9749325 1.42%
2016 9774110 9726501 0.49% 9907959 1.37%
2017 10016614 9760807 2.55% 10080405 0.64%
2018 10272995 9923152 3.41% 10301844 0.28%
2019 10400967 10080278 3.08% 10467181 1.89%
2020 9555614 10119462 5.90% 9751515 2.05%

BEIJING ENERGY FOOTPRINT PREDICTION SCENARIO ANALYSIS
Scenario Setting for Energy Footprint Prediction in Beijing

In this paper, the development scenarios of Beijing are set up according to the policy documents related to the
"14th Five-Year Plan" of Beijing and the current trends in energy footprint impact factors. Since the energy
footprint is a time series of the research target, it is not considered as a scenario; and since the land nature of
Beijing does not change significantly, the carbon sequestration capacity of the land is also not considered as a
scenario.

In this study, the possible scenarios are set up as three scenarios: a baseline scenario, a low energy footprint
scenario and a high energy footprint scenario. the baseline scenario refers to Beijing's "14th Five-Year Plan”,
energy planning and other policy documents to analyse future development trends and set scenarios; The low
energy footprint scenario is based on the baseline scenario, which assumes that Beijing's energy green and low-
carbon transition is effective, and that the control of energy and carbon emissions is better than expected, i.e. the
established targets are completed ahead of schedule or exceeded. Under the low energy footprint scenario, the
factors that contribute to the rise in the energy footprint develop slower, while those that counteract the rise of the
energy footprint develop faster in relative terms; The high energy footprint scenario, meanwhile, is the opposite
of the low energy footprint scenario, assuming that factors contributing to the increase in the energy footprint
develop faster and factors inhibiting the rise in the energy footprint develop relatively slower.

(1) Population Size Scenario Setting. Between 1980 and 2020, the population size of Beijing expanded from
9043000 to 21890000, with an average annual growth rate of 2.23% in population size. The Beijing Urban Master
Plan (2016-2035) and the Outline of the Fourteenth Five-Year Plan for National Economic and Social
Development of Beijing Municipality and Vision 2035 both propose strict control of the population size,
determining that by 2035, the size of the resident population of Beijing Municipality will be controlled at less than
23 million people.

Table 13. Setting of population size scenarios

Scenario Settin Population size of Beijing| Average annual growth rate of Population size of
g in 2020 Beijing's population, 2020-2025 Beijing in 2025
Low energy footprint 2189 0.49% 2243
scenario
Baseline scenario 2189 0.99% 2300
High energy footprint 2189 1.49% 2357
scenario

Based on the above relevant policies and data, a baseline scenario for the population size of Beijing is set, i.e.,
under the baseline scenario, the population of Beijing will be controlled to be around 23 million in 2035, and from
2020 to 2035, the population of Beijing is expected to grow at an average annual rate of 0.99%; The average
annual growth rate of population size goes up and down by 0.5 percentage points under the high energy footprint
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scenario versus the low energy footprint scenario. The population size scenarios are therefore set as shown in
Table 13.

(2) Economic development level scenario setting. In terms of GDP, during the period 1980-2020, Beijing's GDP
grew at a high rate, from 13.91 billion yuan to 3,610.26 billion yuan, with an average annual growth rate of 14.90%.
From 2015 to 2020, Beijing's GDP maintained steady growth, averaging a 7.82% annual increase. The anticipated
goals set out in the Outline of the Fourteenth Five-Year Plan for the National Economic and Social Development
of Beijing Municipality and the Vision for 2035 state that the quality of economic development should be improved
and the average annual growth rate of Beijing's GDP should be controlled to be around 5%.

Considering the aforementioned policies and data, a baseline scenario for Beijing's economic development level
has been established, i.e., in the baseline scenario, the average annual growth rate of GDP is 5% by maintaining
high-quality development; in the high energy footprint scenario and the low energy footprint scenario, the average
annual growth rate of GDP floats up and down by 0.5 percentage points. The GDP scenarios are therefore set out
in Table 14.

Table 14. Setting of GDP scenarios

Scenario Settin Beijing's GDP in Average annual growth rate of Beijing's GDP in
9 2020(10000 yuan) Beijing's GDP, 2020-2025 2025(10000 yuan)
Low energy footprint 36102.6 4.5% 44990.4
scenario
Baseline scenario 36102.6 5% 46077.1
High energy footprint 36102.6 5.5% 47184.7
scenario

(3) Energy consumption intensity scenario setting. 1980 - 2020, the efficiency and effectiveness of energy use in
Beijing has improved significantly, and the intensity of energy consumption exhibits a clear declining trend, with
the intensity of energy consumption in Beijing falling from 13.7146 tonnes of standard coal per 10,000 yuan to
0.1873 tonnes of standard coal per 10,000 yuan. The State Council's Comprehensive Work Programme on Energy
Conservation and Emission Reduction for the Fourteenth Five-Year Plan clearly states that, by 2025, energy
consumption per unit of GDP nationwide will be 13.5% lower than in 2020.

According to the above relevant policies and data, a baseline scenario for Beijing's energy consumption intensity
is set, i.e., under the baseline scenario, Beijing's energy consumption intensity in 2025 will decrease by 13.5%
compared with that in 2020. Based on the energy consumption intensity of 0.1873 tonnes of standard coal per
10,000 yuan in 2020, the energy consumption intensity of Beijing will be 0.162 tonnes of standard coal per 10,000
yuan in 2025, and it is projected to decline at an average annual rate of 2.86%; The average annual growth rate of
energy consumption intensity moves up and down by 0.5 percentage points between the high and low energy
footprint scenarios. The energy consumption intensity scenarios are therefore set as shown in Table 15.

Table 15. Setting of energy consumption intensity scenarios

Scenario Setting

Beijing energy consumption
intensity in 2020(tonnes of
standard coal per 10000 yuan)

Average annual growth rate of
energy consumption intensity
in Beijing, 2020-2025

Beijing energy consumption
intensity in 2025 (tonnes of
standard coal per 10000 yuan)

footprint scenario

] Low energy 0.1873 -3.36% 0.1579

ootprlnt scenario

Baseline scenario 0.1873 -2.86% 0.1620
High energy 0.1873 -2.36% 0.1662

(4) Energy consumption structure scenario setting. It can be observed that in the energy consumption structure of
Beijing, the change of coal consumption is relatively significant, so the scenario setting mainly adopts the indicator
of the share of coal consumption in the overall energy consumption. The Beijing Municipal Energy Development
Plan for the "14th Five-Year Plan" Plan Period proposes to strengthen the control of total energy consumption
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and intensity, enhancing the efficiency of energy use, and anticipate that by 2025 Beijing's total energy
consumption will be 80.5 million tonnes of standard coal. Therefore, under the baseline scenario, Beijing's total
energy consumption in 2025 will be 80.5 million tonnes of standard coal, and based on the total energy
consumption of Beijing in 2020 of 67.621 million tonnes of standard coal, the average annual growth rate in the
period of 2020-2025 will be 3.55%.

In terms of coal consumption, during the period 1980-2020, Beijing's coal consumption showed an upward and
then downward trend, and in 2020, coal consumption was 1,014,900 tonnes of standard coal, representing 1.5%
of total energy consumption. The Beijing Municipal Energy Development Plan for the "14th Five-Year Plan"
Period proposes to strengthen control of the overall volume and density of energy and carbon emissions, and sets
the main target for the energy consumption structure in 2025, by which Beijing's coal consumption will be
controlled at 1 million tonnes, equivalent to 700,000 tonnes of standard coal, accounting for 0.87% of the total
energy consumption. Therefore, under the baseline scenario, Beijing's coal consumption in 2025 is 700,000 tonnes
of standard coal, representing 0.87% of the overall energy consumption. Based on the coal consumption of 1.0149
million tonnes of standard coal in 2020, the average annual growth rate of coal consumption in Beijing from 2020
to 2025 is -7.16%. It moves up and down by 0.5 percentage points under the high energy footprint scenario versus
the low energy footprint scenario. The coal consumption scenarios are therefore set as shown in Table 16.

Table 16. Setting of coal consumption scenarios

Scenario Setting

Beijing energy consumption
intensity in 2020(tonnes of
standard coal per 10000 yuan)

Average annual growth rate of
energy consumption intensity
in Beijing, 2020-2025

Beijing energy consumption
intensity in 2025(tonnes of
standard coal per 10000 yuan)

Low energy

. . 101 -7.66% 68
footprint scenario

Baseline scenario 101 -7.16% 70

High energy 101 -6.66% 72

footprint scenario

Combining the total energy consumption scenario and the coal consumption scenario, the low, baseline and high
energy footprint scenarios of Beijing's energy consumption structure were set up, and the specifics of the scenarios
can be seen in Table 17.

Table 17. Setting of energy consumption structure scenarios

Year Low energy footprint scenario |  Baseline scenario High energy footprint scenario
2021 1.50% 1.50% 1.50%
2022 1.34% 1.35% 1.35%
2023 1.19% 1.21% 1.22%
2024 1.06% 1.08% 1.10%
2025 0.95% 0.97% 0.99%

Beijing Energy Footprint Prediction under Different Scenarios

Based on the three energy footprint scenarios set out above, specific data on the energy consumption structure,
energy consumption intensity, economic development level and population size under the three scenarios of the
low energy footprint scenario, baseline scenario and high energy footprint scenario were calculated and collated
according to the energy footprint accounting formula, and combined with the data on the capacity of land to
sequester carbon. Using the above GRU neural network-based Beijing energy footprint prediction model to predict
and analyse the possible evolution of Beijing's energy footprint from 2021 to 2035, the forecast results under three
scenarios are shown in Table 18.

As shown in Table 18 and Figure 5, the results of GRU neural network's prediction of Beijing's energy footprint
from 2021 to 2035 under different scenarios show that under the three scenarios of the low energy footprint
scenario, baseline scenario, and high energy footprint scenario, the time of Beijing's energy footprint reaching the
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peak is not the same as the peak of the energy footprint, and the specific energy footprint reaching the peak is
shown in Table 19.

Table 18. Beijing's Energy Footprint Projections for 2021-2035 under Different Scenarios (hm?)

Year Low energy footprint scenario Baseline scenario High energy footprint scenario
2021 10089884 10105398 10089884
2022 10103049 10089884 10107716
2023 10107039 10113296 10119426
2024 10106125 10117337 10128212
2025 10100456 10117400 10133662
2026 10100543 10123864 10146014
2027 10078196 10116443 10142968
2028 10048400 10099896 10128978
2029 10010048 10073815 10103596
2030 9961688 10037900 10066542
2031 9898954 9992013 10017742
2032 9845231 9935923 9957067
2033 9783450 9869857 9884903
2034 9713633 9794138 9801796
2035 9636049 9709261 9708518
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g 10000000
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2 9700000
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Figure 5. Results of Beijing's energy footprint predictions for different scenarios, 2021-2035

Table 19. Peak time and peak value of Beijing's energy footprint under different scenarios

Scenario Energy footprint peaking time Energy Footprint Peak (hm?)
Low energy footprint scenario 2023 10107039
Baseline scenario 2026 10123864
High energy footprint scenario 2027 10146014

Based on the projected results of Beijing's energy footprint and the peak energy footprint from 2021 to 2035, it
can be observed that under the three scenarios of low energy footprint scenario, baseline scenario, and high energy
footprint scenario, Beijing's energy footprint shows a trend of gradually rising to reach the peak and then starting
to decline, and across various scenarios, the general pattern of change in the energy footprint remains consistent.
However, both the time to peak and the peak value of Beijing's energy footprint are different in different scenes.
Under the baseline scenario, it is forecasted that the energy footprint will reach its peak in 2026, with a peak
energy footprint of 101,238,664 hectares; In the high energy footprint scenario, the energy footprint is projected
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to peak in 2027 with a peak energy footprint of 10,146,014 hectares, which represents a one-year delay in peaking
and a 0.2% increase in the peak energy footprint compared to the Baseline Scenario; In the low energy footprint
scenario, the energy footprint is expected to peak in 2023, with a peak energy footprint of 101,070,039 hectares,
which is three years earlier than in the baseline scenario, and the peak energy footprint declines by 0.17%, with a
clear downward trend after the energy footprint peaks. And compared to the baseline scenario and the high energy
footprint scenario, the energy footprint value in the low energy footprint scenario decreases to a large extent.

CONCLUSION

In order to give Beijing a theoretical foundation and scientific direction for promoting the high-quality
development of its energy, controlling its overall energy footprint, and achieving a green and low-carbon energy
transition, this paper focuses on the "dual-carbon™ goal, accounts for and analyzes Beijing's energy footprint,
investigates the evolutionary patterns and influence mechanisms of the factors affecting Beijing's energy footprint,
and forecasts Beijing's energy footprint, examining when it will reach its peak carbon value under the baseline,
low-footprint, and high-footprint scenarios. This will give Beijing the theoretical underpinnings and scientific
direction it needs to support high-quality energy development, manage the overall energy footprint, and achieve
the switch to green and low-carbon energy. The following are the findings and conclusions of the study:

(1) To account for Beijing's energy footprint from 1980 to 2020, an energy footprint accounting model based on
net primary production was developed. The findings indicate that Beijing's energy footprint has been growing
since 1980, that there is a deficit in the energy footprint, that the shortfall is growing, and that the ecological
environment is under increasing pressure from Beijing's energy use.

(2) A decomposition analysis model of the impact mechanism of Beijing's energy footprint based on LMDI was
developed, and the contributions of four factors to Beijing's energy footprint were examined: energy consumption
structure, energy consumption intensity, economic development level, and population size. The results indicate
that the level of economic development positively contributes to the growth of the energy footprint, which serves
as the primary driver behind the expansion of the energy footprint; the population size also plays a role, to a certain
degree, in driving up the energy footprint, but the contribution value and rate are always at a low level; The energy
consumption structure's contribution to the energy footprint exhibits a trend of both promotion and suppression,
but it has increased significantly in recent years, with a notable increase in the suppression effect on the energy
footprint. The energy consumption intensity's contribution to the energy footprint's growth is entirely negative,
and it is the primary factor preventing the energy footprint from growing.

(3) The GRU deep learning neural network served as the basis for developing the prediction model of Beijing's
energy footprint, which was designed to forecast Beijing's energy footprint going forward. The GRU neural
network-based energy footprint prediction model is more successful and can be applied to future energy footprint
predictions after comparison and analysis with the fully connected neural network example. Following that, the
baseline scenario, low energy footprint scenario, and high energy footprint scenario for Beijing's future
development were established based on relevant policies from Beijing's "14th Five-Year Plan" and energy
footprint data, as well as the development trend of each factor under different scenarios. According to the results
of the scenario projections, Beijing's energy footprint will peak in 2026 under the baseline scenario, the high
energy footprint scenario will delay the peak energy footprint to 2027 and increase the peak energy footprint, and
the low energy footprint scenario will advance the peak energy footprint to 2023, and the value of the energy
footprint will decrease to a greater extent overall.

Based on the above accounting of Beijing's energy footprint, examination of the factors influencing the energy
footprint impact mechanism, and the energy footprint prediction results, we propose relevant policy
recommendations for high-quality energy development in Beijing and energy footprint control.

(1) Optimize the energy structure and increase energy use efficiency.

Implement measures to replace fossil fuels with renewable energy, develop a new kind of power system based on
wind and solar power generation, and raise the share of green power from outside transfers; empower with science
and technology; apply information technology, including artificial intelligence, the Internet of Things, as well as
various other information technologies, to the energy sector; create a regional integrated intelligent energy system;
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encourage the development, adoption, and use of new energy technologies; and increase the efficiency of energy
use.

(2) Manage the population and economy to ensure high-quality growth.

The growth of the population and the degree of economic development will both have an impact on the larger
energy footprint. The scenarios' outcomes also demonstrate that Beijing's overall energy footprint will be larger
under the high energy footprint scenario, which is characterized by rapid economic development and population
growth, than it will be under the baseline and low energy footprint scenarios. Under Beijing's 14th Five-Year Plan,
the city's population shouldn't be more than 23 million, the average annual growth rate of its GDP should be kept
at or below 5%, and the quality of economic development should be improved. As a result, it is necessary to
regulate the GDP and population growth rates and transition from rapid to high-quality growth.

(3) Enhance the capacity of land to store carbon and fortifying ecological construction.

The energy footprint is directly impacted by the land's capacity to absorb carbon, or the region's net primary
productivity, according to data pertaining to energy footprint accounting. Forest land, water, grassland, arable
land, and building land all have decreasing capacities for absorbing carbon under various land types. Thus,
enhancing ecological civilization construction, urban planning, and environmental quality in Heili can all help to
effectively lower the energy footprint and ultimately carbon consumption. Simultaneously, there is a need to
bolster the ecological and environmental governance system, promote the prevention and control of pollution, and
enhancing the quality of water sources, forests, and soils in order to continue improving ecological and
environmental conditions and carry out the improvement of the land's carbon absorptive capacity. Strengthening
the construction of ecological civilization requires increasing the awareness of ecological protection, energy
saving, and emission reduction of all people, as well as applying these concepts to all stages of production and
life.

However, there are still a few issues with this work that require more investigation. Only statistical data from
1985, 2000, and 2010 have replaced Beijing's land use types in terms of energy footprint accounting. Future
research using big data and geographic information systems (GIS) will be able to measure Beijing's land use types
in greater detail by combining the GIS system with satellite remote sensing images.
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