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Abstract:  

Many-objective evolutionary algorithms are difficult to maintain good individual convergence and population 

diversity. As the number of objectives increases, there are more and more non-dominated solutions, and some 

existing diversity metrics are no longer useful. In this paper, a many-objective decomposition-based 

evolutionary algorithm with adaptive weights (MaOEA-AWM) is proposed. The convergence and diversity of 

individuals in high-dimensional target space are balanced in the proposed MaOEA-AWM through the use of 

a scaling method known as angle penalty distance. Additionally, a weight vector adaptation approach is 

proposed to adjust the weight vector distribution. Experiments show that MaOEA-AWM has strong 

competitiveness in many-objective optimization problems compared with seven advanced algorithms. 

Keywords: evolutionary algorithm, adaptive weights, decomposition-based, many-objective problems 

INTRODUCTION 

Multi-objective optimization problem (MOP) refers to the problem that multiple objective functions need to be 

optimized simultaneously in the optimization process, but the objectives compete with each other. MOPs can be 

summarized as [1] 

𝑚𝑖𝑛
𝑥

  𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑀(𝑥)) 

𝑠. 𝑡.   𝑥 ∈ 𝑋 
(1) 

where X ∈ ℝm is the decision space with the decision vector x = (x1, x2, …, xn) ∈ X. Optimization problems with 

more than three objectives are called Many-objective problems (MaOPs). Due to the contradictory nature of the 

objectives, it is uncommon to find a single solution that simultaneously optimizes all of them. Hence, it is possible 

to achieve a set of Pareto-optimal solutions that illustrate the tradeoffs among various objectives [2]. 

When MOEAs are used to solve MaOPs, their performance degrades significantly due to dimensionality [3]. In 

addition, because of the high dimension, it becomes very difficult to maintain good population diversity [4,5]. 

Therefore, to overcome the above problems, a large number of MaOEAs [6] have been proposed by researchers. 

The existing MaOEAs can be broadly divided into three categories. 

The first category of methods mainly involves modifying or relaxing the Pareto dominance relation to select 

excellent individuals. Such as ε-dominance [7], L-dominance [8], preference order ranking [9] and fuzzy Pareto 

dominance [10]. In the literature [11], a grid-based dominance metric is proposed to solve the MaOPs, which is 

called grid-based EA (GrEA). S-CDAS [12] extends the understanding of the dominant region. 

The second category is the decomposition-based MaOEA. These algorithms transform MaOPs into multiple 

single-objective optimization subproblems with a set of reference vectors [13]. Among these algorithms, the most 

classical one is MOEA/D [14], which uses a predefined set of weight vectors to search for PS. The adaptive 
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allocation search in MOEA/D-AM2M [15] and the adaptive scalarization method in MOEA/D-PaS [16]. Thus, 

diverse weights may give rise to different Pareto optimal sets [17]. 

Indicator-based approaches are the third kind. Including the indicator-based EA [18], the S-metric selection-based 

MOEA [19], a dynamic neighborhood MOEA based on hypervolume (HV) indicator [20], and the fast HV-based 

EA (HypE) [21]. Hypervolume (HV) refers to a widely used indicator in MOEA. When the objective is larger, 

the calculation cost of the HV value is very expensive. There are some simple indicators, such as the I(ε)+ indicator 

in IBEA [22] and the R2 indicator in R2-EMOA [23]. 

When solving MaOPs, the selection criteria of the enhanced convergence algorithm may lose the effectiveness of 

pushing the population to PF. Indicator-based algorithms often require high computational time complexity [24]. 

In the literature [25-27], inspired by the idea of decomposition-based algorithms, MaOEA-AWM is proposed. 

MaOEA-AWM uses an angle-based method to select individuals, which improves the convergence of individuals 

and the distribution of populations. The adaptive adjustment method of weight vectors is used to adjust the 

distribution of vectors to obtain a suitable Pareto Set (PS). The main contributions of MaOEA-AWM are 

summarized as follows: 

(1) Different from most decomposition-based algorithms, the penalty-based boundary intersection (PBI) method 

is used as the criterion for evaluating individuals. The angle penalty distance (APD) is used to select individuals 

and to identify the main weight vector and the auxiliary weight vector, which helps to improve the convergence 

and diversity of individuals. 

(2) Different from the principle of population division using general weight vectors, such as the population 

division principle mentioned in MOEA/D-M2M, MaOEA-AWM uses main-auxiliary weight vectors to divide the 

population. The main weight vector and its auxiliary weight vector are grouped into a partition. The new method 

of dividing the population can accelerate the convergence speed of the population and maintain the individuals’ 

number in population. 

(3) Different from the adaptive strategy of global weight vector adjustment in RVEA [28], an adaptive adjustment 

method for weight vectors is proposed in order to obtain the appropriate PS. This method adjusts the weight vector 

in the partition. The new strategy optimizes the distribution of weight vectors and enhances the diversity of 

individuals. 

RELATED WORK 

Weight Vector 

According to the literature [29], a method of creating a uniform distribution weight vector is proposed. A set of 

uniformly distributed points are constructed: 

𝑤𝑖 = (𝑤𝑖
1, 𝑤𝑖

2, . . . , 𝑤𝑖
𝑀), 𝑖 = 1,2, . . . . , 𝑁 

𝑤𝑖
𝑗

∈ {
0

𝑊
,

1

𝑊
, . . . ,

𝑊

𝑊
} , ∑ 𝑤𝑖

𝑗
= 1

𝑀

𝑗=1

 
(2) 

where N is the number of uniformly distributed reference points, M is the number of objectives, and W is a positive 

integer of the simplex-lattice design [30]. The corresponding unit weight vector vi is obtained: 

𝑣𝑖 =
𝑤𝑖

‖𝑤𝑖‖
                                                          (3) 

Fig.1 shows the transformation of the reference point from a hyperplane to a hypersphere. 

The spatial relationship between vectors v1 and v2 is measured by the cosine value of the acute angle θ between 

them. The calculation formula is 

𝑐𝑜𝑠 𝜃 =
𝑣1𝑣2

‖𝑣1‖‖𝑣2‖
                                                  (4) 

where ||·|| represents the 2-norm calculation. Similarly, the space relationship can be measured by the cosine value 

of the acute angle β between vector a and individual A. The calculation formula is 

𝑐𝑜𝑠 𝛽 =
𝑎𝐴

‖𝑎‖‖𝐴‖
                                                    (5) 
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Figure 1. On three-objective, ten uniformly distributed weight vectors are generated 

 

Figure 2. The association of individuals with vectors 

Population Partition 

The partitioning method adopted by RVEA is introduced. The population Pt is divided into N subpopulations, 

which is based on the association partition of the example in Fig. 2. The spatial relationship between two vectors 

(objective vector f’i and weight vector vj): 

𝑐𝑜𝑠 𝜃𝑖,𝑗 =
𝑓𝑖
′𝑣𝑗

‖𝑓𝑖
′‖
                                                            (6) 

Only when the angle between f’i and vj is the smallest, individual Ii is assigned to a subpopulation Pj. 

The Angle-Penalized Distance APD 

Angle-penalized distance (APD) is a distance metric commonly used in MaOEAs. The calculation of APD can be 

achieved by the following steps. 

Firstly, the distance between individuals A and B is calculated, which is expressed as d (A, B). 

Then, the angle difference between individual A and B is calculated and expressed as θ (A, B). The cosine similarity 

can be used to measure the angle difference. The specific calculation Eq. is 

𝜃(𝐴, 𝐵) = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑓(𝐴)×𝑓(𝐵)

‖𝑓(𝐴)‖×‖𝑓(𝐵)‖
)                                           (7) 

Among them, f(A) and f(B) are the objective vectors of individuals A B in the objective space, respectively. 

Finally, the Euclidean distance d (A, B) is multiplied by an angle penalty factor and expressed as P (θ (A, B)). The 

angle penalty factor can be defined according to specific problems, and the common forms are linear penalty, 

exponential penalty, and so on. 

𝑃(𝜃(𝐴, 𝐵)) = 𝑑(𝐴, 𝐵) × 𝑔(𝜃(𝐴, 𝐵))                                           (8) 

Here, g (θ (A, B)) is the angle penalty function, which is defined according to the specific problem. 

Through the above steps, the APD value between individual A and B can be obtained. 
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MAOEA-AWM 

Motivation 

RVEA divides the population into multiple sub-populations depending on weight vectors and selects the best 

individuals from every sub-population to enter the next generation. However, when the search space becomes 

large, a small number of high-quality individuals corresponds to a large number of weight vectors, as illustrated 

in Fig.3(a). There are 8 weight vectors (a-h) and 8 individuals (A-H), where vector a corresponds to individual A, 

vectors b and c correspond to individual B, vectors d, e, f, and g correspond to individual F, and vector h 

corresponds to individual H. Individuals C, D, E, and G are not corresponding to any weight vector, while B and 

F are corresponding to more than one weight vector. At this time, individual selection is shown in Fig.3(b). Only 

individuals A, B, F, and H can enter the next generation, and the number of individuals in the population becomes 

smaller. 

In order to solve the population shrinkage and diversity decline caused by the mismatch between individuals and 

weight vectors, the adjustment of the weight vector should be adopted. Some rules should be modified. 

Firstly, based on a certain evaluation index or method, the important weight vectors need to be determined, which 

remain unchanged in the process of weight vector adjustment. As illustrated in Fig.4(a), the vectors a, b, f, and h 

are determined as the important weight vectors. During the weight adjustment, the vectors a, b, f, and h are 

unchanged. 

Secondly, the auxiliary weight vectors around the important weight vector should be adjusted to optimize the 

distribution of weight vectors and increase the diversity of individuals. In Fig.4 (a), vectors c, d are auxiliary 

weight vectors of vector b, and vectors e, g are auxiliary weight vectors of vector f. In Fig.4(b), after adjusting the 

weight vector, the auxiliary vectors c and d converge to the important weight vector b, and the auxiliary vectors e 

and g converge to the important weight vector f. 

It is worth noting that the important weight vectors are not always constant, they may be changed according to 

the weight vector adjustment rules and the index. In Fig. 5, when the previous important weight vector b is no 

longer important, it becomes the auxiliary weight vector of the new important weight vector c. Similarly, the 

previous important weight vector f becomes the auxiliary weight vector of the new important weight vector g. 

  

(a) Before the individual is selected (b) After the individual is selected 

Figure 3. The corresponding situation of the weight vector and individual 
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(a) Determination of important weight vector and its 

auxiliary weight vector 

(b) After the weight vector is adjusted 

Figure 4. Important weight vector and auxiliary weight vector 

 

 

Figure 5. The vectors b and f are no longer important weight vectors, and the vectors a, c, g and h become new 

important weight vectors. 

Main Framework 

Algorithm 1 describes the main framework of MaOEA-AWM. 

At first, population P0 with N individuals and a set of unit weight vectors V0 are generated (lines 1&2). The 

offspring population Ot was generated by the parent population Pt [32] (line 4). Ot is combined with Pt for elite 

selection (line 5). The next-generation population Pt+1 is determined by environmental selection (line 6). The set 

WAPD records the APD value of all weight vectors Vt. The main weight vector Vmain is determined based on WAPD 

(line 7). Vmain represents the better of the weight vectors. When the current generation meets the specific condition 

(line 8), some weight vectors are adaptively adjusted (line 9). 

The three components of MaOEA-AWM will be introduced in the following, including environmental selection 

(Algorithm 2), decision of the main weight vector (Algorithm 3), and weight vector adaptation (Algorithm 4). 

Environmental Selection 

In MaOEA-AWM, APD is used to evaluate individuals. The small value of APD represents the individual’s good 

performance. Algorithm 2 describes the environmental selection of MaOEA-AWM. 

Firstly, Normalize population Pt (line 1). Secondly, the APD of each individual Ij in Pt is calculated and stored in 

the IAPD (lines 2-4). Then, for each weight vector, the angle between the vector w and each individual in Pt is 

calculated (line 6), and the individuals with the smallest angle (Anglemin) to the weight vector w are found (line 7). 

Thirdly, the individual with the smallest APD is found and associated with the weight vector w (line 8). IAPD-min 
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stores the smallest APD. The individual index temp with the smallest APD is found (line 9). Finally, the APD of 

the weight vector w is IAPD-min, which is stored in WAPD (line 10). Individuals with index stored in temporarily are 

selected into the next generation population Pt+1 (line 11). 

Algorithm 1 Main Framework 

Input:  The maximal number of generations tmax  

Output: Final population Ptmax. 

1 Create population P0, the size of N; 

2 Generate a set of unit weight vectors V0; 

3 while t < tmax do 

4 Ot = Creation Offspring (Pt); 

5 Pt = Pt∪Ot; 

6 [Pt+1, WAPD] = Environmental-Selection (Pt, Vt); (Algorithm 2) 

7 Vmain = Decide-Main-Vector (Vt, WAPD); (Algorithm 3) 

8 if t < tmax × 90% & mod (t, (tmax × 5%)) == 0 

9 Vt+1 = Weight-Vector-Adaptation (Pt+1, Vt, Vmain); (Algorithm 4) 

10 End if 

11 End while 

 

Algorithm 2 Environmental Selection 

Input:  tmax, Pt, weight vector set Vt = {V1, V2, …, VN}. 

Output: Population Pt+1, APD of weight vectors WAPD. 

1 Normalization (Pt); 

2 for j = 1 to |Pt| do 

3 Calculate the IAPD of each individual Ij; /* refer to Eq. (8) * 

4 End for 

5 for i = 1 to N do 

 /*Calculate the smallest angle value between vector w and individuals. */ 

6 Angle = pdist2 (Pt, w, ‘cosine’);  

7 Anglemin = min (Angle);  

8 IAPD-min = min (IAPD(Anglemin));  

9 temp = find (IAPD == IAPD-min);  

10 WAPD(i) = IAPD-min;  

11 Pt+1 = (Pt+1, Itemp);  

12 End for 

 

Algorithm 3 Decide Main Vector 

Input:  Vt = {V1, V2, …, VN}, APD of weight vectors WAPD, pre-defined threshold zeta. 

Output: Main vectors Vmain. 

1 for i = 1 to |Vt | do 

2 Vmain(i) = V (find (WAPD == min (WAPD))); 

3 for j = 1 to |Vt | do 

4 if j ~= i & cosine (Vmain(i), Vj) <= zeta 

5 Vj is the auxiliary vector of Vmain(i); 

6 Remove the APD of Vj in WAPD; 

7 End if 

8 End for 

9 Remove the APD of Vmain(i) in WAPD; 

10 End for 

The angle penalty distance (APD) is used to select individuals rather than the widely used penalty-based boundary 

intersection (PBI) method, mainly because APD has higher target number scalability than PBI for solving MaOPs. 

PBI is based on the Euclidean distance calculation method, and APD is based on the angle distance calculation. 

The angle is always constant. 
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Decision of the Main Vectors 

Algorithm 3 describes how to determine the main weight vector. The target space is divided into several sub-

spaces by weight vectors. Every sub-space is the corresponding main weight vector space. The main weight vector 

selection strategy includes two steps: 1) Determining the main vector; 2) Population division. 

a) Determining the main vector: All weight vectors are divided into main weight vectors and auxiliary weight 

vectors. 

Algorithm 4 Weight Vector Adaptation 

Input:  Generation index t, weight vector set Vt = {V1, V2, …, VN}, main weight vector set Vmain. 

Output: Weight vector set Vt+1. 

1 The individual Pt
APD-max associated with the worst-performing vector and the individual Pt

APD-min 

associated with the best-performing vector are calculated respectively; 

2 
𝑉𝑡+1 =

𝑉𝑡∘(𝑃𝑡
𝐴𝑃𝐷−𝑚𝑎𝑥−𝑃𝑡

𝐴𝑃𝐷−𝑚𝑖𝑛)

∥𝑉𝑡∘(𝑃𝑡
𝐴𝑃𝐷−𝑚𝑎𝑥−𝑃𝑡

𝐴𝑃𝐷−𝑚𝑖𝑛)∥
; /* refer to Eq. (9) */ 

 

The main weight vector is defined as the weight vector with good performance among all weight vectors, namely 

the weight vector with a small APD value. The weight vector whose angle difference from main weight vectors 

is smaller than the pre-defined threshold cosine (Vmain(i), Vj) <= zeta is defined as an auxiliary weight vector. The 

vector with the smallest APD value is selected as the main weight vector Vmain(i) (line 2). When the angle between 

Vmain(i) and other vectors Vj in Vt is less than the predetermined threshold zeta, the other vectors become Vmain(i)’s 

auxiliary vectors (lines 4&5). APDs for Vmain(i) and Vj are removed in WAPD (lines 6&9). 

b) Population division: A sub-space is defined by the main weight vector and all of its auxiliary weight vectors. 

Weight Vector Adaption 

When dealing with more complex PF, the final Pareto solution set may have bad results [31]. In order to deal with 

these defects, some studies have adopted weight vector adaptation. For example, in literature [32], each weight is 

periodically adjusted. Unlike other previous papers, some changes should be made: 

(1) Weight adjustment occurs only within the partitions generated in Algorithm 3. Within a partition, the auxiliary 

weight vector will gather together with the main weight vector. 

(2) Weight adjustment method: The main weight vector does not move, and the auxiliary weight vectors are 

adjusted by formulas: 

𝑉𝑡+1 =
𝑉𝑡∘(𝑃𝑡

𝐴𝑃𝐷−𝑚𝑎𝑥−𝑃𝑡
𝐴𝑃𝐷−𝑚𝑖𝑛)

∥𝑉𝑡∘(𝑃𝑡
𝐴𝑃𝐷−𝑚𝑎𝑥−𝑃𝑡

𝐴𝑃𝐷−𝑚𝑖𝑛)∥
                                                          (9) 

where Vt+1 represents the next-generation partition vector and Vt represents the current partition vector. PtAPD-

max represents the individual associated with the worst-performing vector in the partition, and PtAPD-min 

represents the individual associated with the best-performing vector in the partition. The ◦ operator denotes the 

Hadamard product. 

Algorithm 4 introduces the whole process of weight vector adaptive. First of all, the weight adjustment adaptation 

condition is determined. The individual PtAPD-max associated with the worst-performing vector and the 

individual PtAPD-min associated with the best-performing vector are calculated respectively (line 2). Finally, the 

weight vector adaptation is performed with Eq. (9) (line 3). 

EXPERIMENTAL 

Experimental Design 

In this chapter, MaOEA-AWM is compared with seven state-of-the-art MaOEAs on the DTLZ, SDTLZ1, and 

WFG.  

Experimental design 

To evaluate the effectiveness of MaOEA-AWM, this study selected 16 well-known testing problems from three 

benchmark test suites, DTLZ1-DTLZ6 [33], SDTLZ1, and WFG1-WFG9. These test problems possess diverse 
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characteristics and challenge the performance of the MOEAs. Table 1 lists the specific characteristics of these 

testing problems. 

Table 1. The characteristics of DTLZ1-6, SDTLZ1, and WFG1-9 

Problem Characteristic 

DTLZ1 PF is a linear hyperplane. 

DTLZ2 A relatively simple test example. 

DTLZ3 PF presents a conical shape. 

DTLZ4 It introduces an objective function that maps parametric variables to DTLZ2. 

DTLZ5 It tests whether the algorithm can converge to a degenerate curve. 

DTLZ6 It tests whether the algorithm can maintain sub-populations in different Pareto optimal regions. 

SDTLZ1 Compared to the original DTLZ1, SDTLZ1 is challenging due to the strong scaling. 

WFG1 WFG1 adopts a flat bias and PF hybrid structure design. 

WFG2 PF consists of several disconnected convex segments whose variables are inseparable. 

WFG3 The decision variable is indivisible and degenerate. 

WFG4 WFG4 is characterized by multi-modal, large "mountains". 

WFG5 WFG5 is a deceptive problem. 

WFG6 WFG6 is an inseparable reduction problem. 

WFG7 A separable single-peak problem, but it is parametrically dependent. 

WFG8 WFG8 is indivisible and parameter-dependent. 

WFG9 WFG9 is inseparable, and WFG9 will cause parameter dependence. 

 

Comparative algorithm 

In order to comprehensively validate the performance of MaOEA/D-AWM, this paper selected several 

representative MOEAs for comparison, including RVEA, NSGA-III [34], MOEA/DD [35], MOEA/D-AWA, 

PREA [36], KnEA and MOEA/D-UR [37]. The fundamentals of these seven state-of-the-art algorithms are briefly 

described below: 

1) RVEA applies a framework similar to that of the NSGA-II, from which RVEA adopts an elitism strategy, where 

the offspring population is generated using traditional genetic operators. 

2) MOEA/DD is a decomposition-based MOEA. The distributed deployment and collaborative update mechanism 

is adopted by MOEA/DD to realize the combination of global search and local optimization. 

3) NSGA-III is an extension of NSGA-II and is characterized by the combination of non-dominated sorting with 

a decomposition-based niche strategy. This strategy replaces the traditional crowded distance and maintains the 

diversity of the population. 

4) MOEA/D-AWA has an adaptive scheme to dynamically change the weights at the late stage of the optimization. 

Starting at 80% of the evolutionary process, weight vectors in the dense regions are periodically removed and new 

weight vectors are generated in the sparse regions. 

5) PREA is a region-based many-objective evolutionary algorithm with a diversity maintenance mechanism using 

parallel distance to handle MOPs and MaOPs.  

6) KnEA is a knee point-driven evolutionary algorithm for solving many-objective problems. Solutions for the 

next generation are first chosen based on the non-dominance selection criterion, and then knee points are used as 

the secondary selection criteria. 

7) MOEA/D-UR is an improved algorithm based on the MOEA/D framework. It adopts a unified representation 

to deal with different types of decision variables. 

Performance metric 

Performance metrics are often employed to assess algorithm performance on a test suite. Hypervolume (HV) and 

inverted generational distance (IGD) [38] are applied in this experiment. These two performance indicators, which 

are very popular in academia, are adopted to measure the convergence and diversity of eight algorithms. 
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IGD measures the distance between the PF generated by the algorithm and the true PF. HV measures the range of 

the PF generated by the algorithm in the objective space. The small IGD value and the large HV value mean that 

the convergence and diversity of the algorithm are good. 

Performance settings 

a) Population Size: For MaOEA-AWM, RVEA, MOEA/DD, and NSGA-III, the population size is obtained by 

referring to Eq. (2). For the problem of M ≥ 8, the method proposed in literature [39] can be used to apply the 

two-layer vector generation strategy. The population size settings are shown in Table 2. The population sizes of 

other algorithms are determined according to the literature [6], [14], and [40]. 

b) Parameter Settings: Referring to the literature [35], the values of parameters T, δ, and θ unique to MOEA/DD 

are set. Referring to literature [36], the values of parameter 𝐼𝑟
∞ unique to PREA is set. Referring to the literature 

[12], the values of parameter T unique to KnEA are set. Referring to the literature [28], the values of parameters 

α and fr unique to RVEA are set. Referring to the literature [37], the values of parameters T, δ, and nr unique to 

MOEA/D-UR are set. 

1) The maximum generations for different test instances are set as follows. The maximum generation genmax of 

ZDT 3 is 250, genmax of the other four test instances is 1000. 

2) All algorithms are realized in MATLAB R2021b. 

Table 2. Setting population size 

M Size 

3 91 

5 132 

8 156 

10 275 

15 135 
 

Results and Discussion 

The purpose of this section is to investigate the validity of MaOEA-AWM for various types of MaOPs. Wilcoxon 

rank-sum test was used to compare the results obtained by MaOEA-AWM with the results obtained by seven 

comparative algorithms. 

Performance on DTLZ1-DTLZ6 

Table 3 and 4 show the HV and IGD values of MaOEA-AWM and the other seven algorithms in DTLZ1-6, and 

highlight the best data in bold. 

For DTLZ1, MaOEA-AWM obtains the smallest IGD and the largest HV in a high-dimensional environment 

among all algorithms. For 3 objectives, the HV value of MaOEA-AWM is not much different from that of 

MOEA/D-UR. For 5 objectives, the IGD value of MaOEA-AWM is not greater than that of MOEA/D-AWA. For 

8 objectives, the IGD value of MaOEA-AWM is not greater than that of MOEA/D-UR. 

For DTLZ2, MaOEA-AWM performs well on objectives 5, 8, and 10, but poorly on objectives 3 and 15. The HV 

and IGD performance of MOEA/D-UR on objective 3 are better than those of MaOEA-AWM. The HV value of 

PREA is larger than that of MaOEA-AWM on objective 15. 

For DTLZ4, the MaOEA-AWM has the best overall performance on 5, 8, and 10 objectives of this test problem, 

but the HV value on 3 objectives is slightly lower than that of PREA. The HV value on 15 objectives shows that 

MaOEA-AWM is not as good as PREA, NSGAIII, KnEA, and MOEA/D-UR. 

For DTLZ5, MaOEA-AWM has excellent performance on HV value and IGD value. It is not idle that the 

performance of MaOEA-AWM on 5 objectives is slightly worse than that of MOEA/D-AWA and MOEA/DD. 
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Table 3. The statistical results of HV values measured by DTLZ1-DTLZ6 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA MOEA/D-UR MaOEA-AWM 

DTLZ1 

3 1.3616e-1= 4.5663e-1= 3.5104e-1= 6.6758e-2= 4.3495e-1= 1.4143e-1= 4.5853e-1+ 4.2855e-1 

5 3.7858e-1- 4.6305e-1- 4.6525e-1= 2.8005e-1- 2.0274e-1- 5.0025e-1= 4.7623e-1= 4.3314e-1 

8 4.7865e-2- 5.0178e-1- 4.9601e-1= 4.3808e-1- 4.5572e-3- 0.0000e+0- 5.0203e-1= 5.5103e-1 

10 5.4250e-1= 4.9031e-1= 4.3733e-1= 5.5558e-1= 3.3980e-2- 0.0000e+0- 3.9253e-1- 5.9253e-1 

15 1.8272e-1- 4.0167e-1- 1.6967e-1- 4.3301e-1- 6.7389e-4= 0.0000e+0= 4.6543e-1- 6.7393e-1 

DTLZ2 

3 5.5237e-1= 5.5753e-1+ 5.4915e-1= 5.5473e-1+ 5.5611e-1+ 5.5195e-1= 5.5839e-1+ 5.5301e-1 

5 7.6517e-1- 7.2689e-1- 7.0191e-1- 7.6040e-1- 7.5359e-1- 7.5197e-1- 8.2347e-1- 8.4987e-1 

8 8.5462e-1= 8.4432e-1= 6.7157e-1- 7.2589e-1- 8.0688e-1- 8.7286e-1= 8.7062e-1= 8.7327e-1 

10 9.2457e-1= 7.2322e-1= 6.7824e-1- 9.0049e-1= 8.4786e-1= 9.2539e-1= 9.0265e-1= 9.2898e-1 

15 4.4902e-1= 7.2264e-1+ 2.8370e-1- 5.1048e-1= 6.5906e-1= 8.6694e-1+ 7.1629e-1= 5.6519e-1 

DTLZ3 

3 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

5 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

8 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

10 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

15 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

DTLZ4 

3 5.5165e-1= 5.9816e-1+ 4.1796e-1= 5.0842e-1= 5.1183e-1= 5.5154e-1= 5.6307e-1+ 5.5312e-1 

5 7.6955e-1- 7.2476e-1- 7.3446e-1- 7.2106e-1- 7.2481e-1- 7.4056e-1- 7.5632e-1- 8.2786e-1 

8 8.4097e-1= 8.1027e-1= 7.9374e-1- 8.4034e-1= 8.5159e-1= 8.4856e-1= 8.2301e-1= 8.5814e-1 

10 9.1211e-1- 8.5318e-1= 8.4017e-1- 8.8785e-1- 8.7450e-1- 9.1145e-1= 7.4025e-1- 9.6719e-1 

15 5.8506e-1- 7.3665e-1= 4.2104e-1- 6.4224e-1= 8.1435e-1+ 9.5256e-1+ 7.5865e-1+ 7.3915e-1 

DTLZ5 

3 1.4306e-1- 1.5612e-1= 1.9199e-1= 1.8242e-1= 1.9337e-1= 1.5573e-1- 1.7652e-1- 1.9346e-1 

5 9.4508e-2= 9.2924e-2- 1.1486e-1+ 1.0791e-1+ 8.4327e-2= 5.9089e-2- 1.0235e-1+ 9.5188e-2 

8 9.0797e-2= 8.6156e-2- 9.9125e-2= 8.5281e-2- 7.3733e-2- 1.1614e-3- 8.5681e-2- 9.9363e-2 

10 9.1778e-2- 9.4235e-2= 9.3287e-2= 9.3911e-2= 4.8591e-2- 1.0008e-2- 9.2237e-2= 9.4871e-2 

15 9.1207e-2- 9.1854e-2= 9.2055e-2= 9.2040e-2= 8.2382e-2- 1.7639e-2- 9.2139e-2= 9.2613e-2 

DTLZ6 

3 1.4030e-1- 1.9475e-1- 1.9214e-1= 1.7904e-1- 1.9076e-1= 1.5736e-1- 1.9236e-1= 1.9425e-1 

5 6.7092e-2+ 1.3538e-1= 1.1355e-1+ 8.2179e-3- 0.0000e+0= 0.0000e+0= 1.2565e-1+ 3.8043e-2 

8 4.6787e-2= 9.2446e-2= 9.9486e-2= 8.3998e-3= 0.0000e+0= 0.0000e+0= 0.0000e+0= 9.9882e-2 

10 4.7464e-2= 6.9426e-2= 7.3440e-2= 3.3213e-2= 0.0000e+0= 0.0000e+0= 7.2360e-2= 7.8218e-2 

15 9.0994e-2+ 0.0000e+0= 9.1740e-2+ 7.3372e-2+ 0.0000e+0= 0.0000e+0= 9.8624e-2= 0.0000e+0 

+/-/= 2/11/17 3/8/18 3/9/18 3/10/17 2/10/18 2/10/18 6/7/17  

 

Table 4. The statistical results of IGD values measured by DTLZ1-DTLZ6 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA MOEA/D-UR MaOEA-AWM 

DTLZ1 

3 3.9193e-1 - 2.2330e-1 - 2.1075e-1 - 5.0209e-1 - 1.7313e-1 - 5.2266e-1 - 1.8506e-1 - 1.5990e-1 

5 4.1310e-1 = 2.8156e-1 = 2.3575e-1 = 3.6896e-1 = 4.5460e-1 = 3.9441e-1 = 2.9665e-1 = 3.0565e-1 

8 5.1984e-1 = 2.1815e-1 = 2.1630e-1 = 2.5785e-1 = 1.8827e+0 - 6.1258e+0 - 2.0431e-1 + 3.4204e-1 

10 2.2384e-1 = 2.1658e-1 = 3.7821e-1 = 3.5820e-1 = 6.3982e-1 = 8.2383e+0 - 2.0358e-1 = 2.1518e-1 

15 5.6046e-1 - 3.9323e-1 - 4.4299e-1 - 2.0217e-1 = 1.8464e+0 - 2.8158e+1 - 2.3254e-1 - 2.0054e-1 

DTLZ2 

3 5.5893e-2 - 5.0146e-2+ 6.0621e-2 - 5.5154e-2 - 5.4838e-2 = 5.5853e-2 - 5.0353e-2 - 5.3813e-2 

5 2.1405e-1 = 2.3464e-1= 2.6820e-1 - 2.1404e-1 = 2.1653e-1 - 2.1437e-1 - 2.2035e-1= 2.1400e-1 

8 3.8885e-1 = 4.8900e-1 - 4.7548e-1 - 3.9250e-1 - 4.4847e-1 - 4.1791e-1 - 3.9032e-1 = 3.7353e-1 

10 5.2426e-1 - 6.7433e-1 - 6.1329e-1 - 5.0980e-1 - 6.1880e-1 - 5.1897e-1 - 5.7638e-1 - 5.0505e-1 

15 9.0912e-1 - 6.9536e-1 + 9.3980e-1 - 6.8581e-1 + 7.4742e-1 + 6.5836e-1 + 6.7639e-1 + 8.7378e-1 

DTLZ3 

3 1.8602e+1 - 6.4122e-2- 1.1537e+1 - 1.7998e+1 - 1.0703e+1 - 1.5790e+1 - 6.8122e+0= 7.0121e+0 

5 1.3708e+1= 1.0839e+1+ 6.8183e+0= 1.7386e+1= 2.3032e+1= 1.6078e+1= 1.3659e+1= 1.4667e+1 

8 1.3745e+1= 1.1297e+1 = 8.1837e+0= 1.4197e+1= 2.7509e+1 - 2.2371e+2 - 2.0471e+2 - 1.3823e+1 

10 1.3993e+1= 1.0265e-1 - 1.0676e+1= 1.9673e+1= 2.6637e+1= 2.4293e+2 - 1.3658e+1= 8.0418e+0 

15 2.3263e+1 - 1.074e-1 = 1.5498e+1= 1.6673e+1- 2.6314e+1 - 2.7898e+2 - 1.5623e+1= 1.5317e+1 

DTLZ4 

3 5.5792e-2 = 4.0254e-1 - 3.5124e-1 - 1.5314e-1 - 1.5245e-1 - 5.6163e-2 = 3.3684e-1 - 5.5015e-2 

5 2.1411e-1 = 2.7695e-1 = 2.9185e-1 - 3.0245e-1 - 2.6894e-1 - 2.2156e-1 - 2.1561e-1 = 2.1266e-1 

8 4.6568e-1- 4.8429e-1 - 5.6258e-1 - 4.4634e-1 - 4.2531e-1 - 4.1902e-1 - 4.3649e-1 - 3.8084e-1 

10 5.7552e-1 - 5.3685e-1 = 6.7059e-1- 6.1743e-1 - 6.0815e-1 - 5.2281e-1 = 5.3256e-1 = 5.0906e-1 

15 8.7496e-1 - 6.1713e-1 = 1.0128e+0 - 8.5620e-1 - 7.6876e-1 - 6.5255e-1 = 6.1907e-1 = 6.1801e-1 

DTLZ5 

3 8.1874e-2 - 1.9211e-2 - 1.9419e-2 - 3.0259e-2 - 1.1967e-2 = 7.0668e-2 - 1.0687e-2 = 1.0206e-2 

5 2.3419e-1 - 1.2091e-1 - 9.0632e-2 = 9.0469e-2 = 1.4494e-1 - 1.6816e-1 - 8.9203e-2 + 9.0450e-2 

8 3.5822e-1 - 8.7263e-2 = 8.8640e-2 = 2.1541e-1 - 2.2235e-1 - 3.3724e-1 - 1.5822e-1 - 8.4922e-2 

10 6.7458e-1 - 2.6132e-1 - 1.4029e-1 = 1.4146e-1 = 2.9622e-1 - 3.4153e-1 - 1.2339e-1 = 1.0729e-1 

15 6.6643e-1 - 3.4116e-1 - 2.4241e-1 = 2.3939e-1 = 3.4558e-1 - 4.5870e-1 - 2.4259e-1 = 2.3702e-1 

DTLZ6 

3 8.6687e-2 - 2.5165e-2 - 1.8537e-2 = 3.5816e-2 - 1.8047e-2 = 7.3092e-2 - 7.2362e-2 - 1.0103e-2 

5 2.4215e-1 - 9.2341e-1 - 9.0149e-2 = 5.7827e-1 - 1.3768e+0 - 5.2595e-1 - 8.7569e-2 + 9.0069e-2 

8 6.3858e-1 - 1.6545e+0 = 1.8887e-1 = 5.5689e-1 - 4.0573e+0 - 3.1298e+0 - 33678e+0 - 1.8555e-1 

10 5.6017e-1 - 2.0525e+0 - 3.1335e-1 = 4.4493e-1 - 4.1339e+0 - 2.7178e+0 - 5.1168e-1 - 2.9385e-1 

15 5.4782e-1 + 2.6351e+0 - 2.7869e-1 + 4.1923e-1 + 4.5719e+0 - 3.2352e+0 - 2.0355e+0 = 1.8664e+0 

+/-/= 1/19/10 3/16/11 1/14/15 2/17/11 1/22/7 1/24/5 4/11/15  
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For DTLZ6, MaOEA-AWM performed significantly better than others on this problem, except for 5 objectives 

and 15 objectives. MOEA/D-AWA was better than MaOEA-AWM on 15 objectives, and MOEA/D-UR was better 

than MaOEA-AWM on 5 objectives. 

On the whole, the MaOEA-AWM has the best overall performance on DTLZ test cases, although it performs 

poorly on a few individual issues. 

Performance on SDTLZ1 

Table 5. The statistical results of HV values measured by SDTLZ1 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA MOEA/D-UR MaOEA-AWM 

SDTLZ1 

3 3.9133e-1 = 6.0235e-1 + 2.4444e-1 = 6.9107e-3 = 5.7207e-1 = 1.7038e-1 = 7.1657e-1 + 5.9687e-1 

5 5.6381e-2 - 5.6351e-2 - 2.5584e-1 - 1.5995e-2 - 4.5979e-2 - 7.6681e-3 - 3.9687e-1 = 4.1984e-1 

8 1.3372e-1 - 1.9679e-1 - 1.8839e-1 - 5.5885e-2 - 2.0220e-1 - 0.0000e+0= 2.3263e-1 = 2.3376e-1 

10 4.4399e-2 - 2.9848e-1 = 4.7045e-2 - 2.7429e-1 = 1.6454e-3 - 0.0000e+0= 2.2981e-1 - 2.7582e-1 

15 3.5927e-2 - 5.0339e-2 - 1.5584e-1 = 5.1637e-2 - 1.0504e-2 - 0.0000e+0= 1.6037e-1 = 2.3713e-1 

+/-/= 0/4/1 1/3/1 0/3/2 0/3/2 0/4/1 0/1/4 1/1/3  

 

Table 6. The statistical results of IGD values measured by SDTLZ1 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA MOEA/D-UR MaOEA-AWM 

SDTLZ1 

3 3.9731e-1 - 1.0368e-1 + 8.5339e-1 - 8.2459e-1 - 2.1858e-1 - 5.9141e-1- 1.2346e-1 = 1.2883e-1 

5 2.1781e+0 - 1.6357e+0 = 1.7311e+0= 1.4306e+0= 2.0963e+0 - 1.4381e+0= 1.4203e+0= 9.6631e-1 

8 7.3043e+0- 7.0336e+1- 7.7144e+0 - 5.8799e+0= 7.6202e+0 - 2.8696e+1 - 5.9697e+0= 5.7496e+0 

10 1.7055e+1= 2.3964e+1 - 3.6843e+1 - 2.9560e+1 - 2.5355e+1 - 1.8514e+2 - 3.4893e+1 - 1.8897e+1 

15 7.0984e+2= 7.0369e+3 - 8.2470e+2= 7.6961e+2= 1.2776e+3 - 9.0821e+3 - 1.3646e+3 - 6.2462e+2 

+/-/= 0/3/2 1/3/1 0/3/2 0/2/3 0/5/0 0/4/1 0/2/3  

 

Tables 5 and 6 show the HV and IGD values of MaOEA-AWM and the other seven algorithms in SDTLZ1, and 

highlight the best data in bold. For the five-objective SDTLZ1, the final solutions obtained by all the algorithms 

are shown in Fig.6. 

For SDTLZ1, the results show the comprehensive performance of MaOEA-AWM is the best, but for some 

objectives, such as the IGD value of 10 objectives, MaOEA-AWM is not smaller than other algorithms, and for 

the HV value of 3 objectives, MOEA/D-UR is greater than MaOEA-AWM. These observations show the 

MaOEA-AWM can handle this scaled DTLZ problem. 

    

(a) RVEA (b) PREA (c) MOEA/D-AWA (d) MOEA/DD 

    

(e) NSGAIII (f) KnEA (g) MOEA/D-UR (h) MaOEA-AWM 

Figure 6. SDTLZ1 5 objectives 
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Performance on WFG1-WFG9 

 

Table 7. The statistical results of HV values measured by WFG1-WFG9 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA 
MOEA/D-

UR 
MaOEA-AWM 

WFG1 

3 5.6890e-1- 7.3156e-1= 7.4869e-1= 3.7941e-1- 6.7646e-1= 4.3142e-1- 7.4657e-1= 7.5450e-1 

5 5.4936e-1- 6.5916e-1- 7.8084e-1= 3.4032e-1- 5.4401e-1- 6.2878e-1- 6.9626e-1- 7.8532e-1 

8 4.5855e-1- 5.9122e-1- 6.0415e-1= 2.9005e-1- 5.3232e-1- 5.5754e-1- 62655e-1= 6.6235e-1 

10 6.0234e-1= 5.3175e-1= 6.8718e-1= 3.4993e-1- 5.8261e-1- 5.4369e-1- 6.3179e-1= 7.0445e-1 

15 7.0277e-1= 5.9525e-1= 6.8397e-1= 5.8146e-1= 8.3339e-1+ 3.9337e-1- 6.9525e-1= 7.1703e-1 

WFG2 

3 8.8481e-1- 9.1385e-1= 8.8182e-1- 8.8825e-1- 9.1154e-1= 8.4961e-1- 9.0325e-1= 9.1473e-1 

5 9.1366e-1= 9.4794e-1= 9.4414e-1= 9.1734e-1= 9.5046e-1= 9.6387e-1+ 9.3649e-1= 9.5440e-1 

8 8.9126e-1= 9.4648e-1= 9.2196e-1= 8.7857e-1= 9.6725e-1= 9.6193e-1= 9.3748e-1= 9.6832e-1 

10 8.8200e-1- 9.3967e-1= 9.4660e-1- 8.6920e-1- 9.6170e-1= 9.5944e-1= 9.4469e-1= 9.6346e-1 

15 8.3998e-1= 9.3360e-1+ 8.5740e-1= 7.9439e-1= 8.9315e-1= 8.7157e-1+ 9.3633e-1+ 8.0219e-1 

WFG3 

3 3.1829e-1- 3.7623e-1= 3.7322e-1= 2.3650e-1- 3.6011e-1= 2.7778e-1- 3.6921e-1= 3.8592e-1 

5 4.5776e-2= 9.2817e-2= 8.6098e-2= 4.1560e-2= 6.8023e-2= 6.1795e-2= 8.9634e-2= 9.6106e-2 

8 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

10 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

15 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0= 0.0000e+0 

WFG4 

3 5.1811e-1- 5.0697e-1= 5.2238e-1= 5.2077e-1= 5.2157e-1= 4.6893e-1- 5.4286e-1= 5.7426e-1 

5 6.9541e-1= 6.9527e-1+ 5.9826e-1= 6.7156e-1= 7.0366e-1+ 7.1747e-1+ 6.7366e-1= 6.6438e-1 

8 7.1524e-1+ 7.6702e-1+ 6.9044e-1+ 6.4805e-1+ 7.6585e-1+ 8.2725e-1+ 7.9350e-1+ 6.0499e-1 

10 7.2638e-1+ 8.2554e-1+ 6.2768e-1= 6.8574e-1= 8.3298e-1+ 8.5867e-1+ 7.0854e-1+ 6.5084e-1 

15 5.0387e-1= 7.5864e-1+ 2.8911e-1- 4.4105e-1= 5.7178e-1= 7.4120e-1+ 8.5368e-1+ 5.3259e-1 

WFG5 

3 4.9624e-1- 5.0993e-1= 4.7713e-1- 4.9602e-1= 5.0478e-1= 4.5066e-1- 5.0794e-1= 5.1037e-1 

5 6.7983e-1+ 6.1278e-1+ 5.4304e-1= 6.2760e-1+ 6.8078e-1+ 6.9371e-1+ 6.9467e-1+ 5.4876e-1 

8 7.2612e-1= 7.3608e-1= 6.1367e-1= 5.5993e-1- 6.9034e-1= 7.8905e-1= 7.7306e-1= 7.9205e-1 

10 7.7078e-1= 7.5938e-1= 6.3603e-1- 5.9555e-1- 7.9629e-1= 8.2510e-1= 7.2908e-1= 8.3455e-1 

15 5.8129e-1= 7.3683e-1= 2.4972e-1- 3.6617e-1- 5.7089e-1= 8.0910e-1+ 7.6533e-1= 6.5904e-1 

WFG6 

3 4.7584e-1= 4.9094e-1- 4.4913e-1= 4.5922e-1- 4.7585e-1= 4.0660e-1- 5.0165e-1= 5.0676e-1 

5 6.5327e-1= 6.5972e-1= 5.1945e-1- 6.2569e-1= 6.4588e-1= 6.6144e-1= 6.6978e-1= 6.7950e-1 

8 6.3429e-1= 6.8913e-1= 5.8280e-1- 4.7319e-1- 6.7532e-1= 7.4085e-1= 6.9887e-1= 7.8576e-1 

10 4.9546e-1- 7.4735e-1= 5.8496e-1- 6.5246e-1- 7.6585e-1= 7.8698e-1= 7.5235e-1= 7.9133e-1 

15 3.0812e-1- 6.7863e-1+ 2.5173e-1- 2.6155e-1- 5.3919e-1= 8.0033e-1+ 7.5623e-1+ 5.2662e-1 

WFG7 

3 5.1519e-1= 5.1277e-1= 5.1178e-1= 5.1786e-1= 5.3193e-1= 4.7441e-1- 5.5310e-1= 5.5123e-1 

5 7.1381e-1= 5.5329e-1- 5.6728e-1- 6.4974e-1- 6.9038e-1- 7.3299e-1= 7.5146e-1= 7.5597e-1 

8 7.2991e-1= 6.7624e-1- 6.1613e-1- 5.1069e-1- 7.1560e-1= 8.4700e-1+ 7.7242e-1= 7.7968e-1 

10 7.3697e-1- 7.3392e-1- 5.9310e-1- 7.3962e-1- 8.2312e-1= 8.7198e-1= 8.5852e-1= 8.7593e-1 

15 3.7709e-1- 6.2682e-1= 2.5071e-1- 1.8742e-1- 6.2272e-1= 7.0435e-1+ 8.6836e-1+ 6.5524e-1 

WFG8 

3 4.2305e-1- 4.2349e-1- 4.2480e-1- 4.3447e-1= 4.4238e-1= 4.0254e-1- 4.6559e-1= 4.6244e-1 

5 5.6740e-1= 5.7337e-1= 4.3221e-1- 5.2739e-1- 5.7337e-1= 5.7317e-1= 5.9817e-1= 6.3627e-1 

8 4.3146e-1- 5.9338e-1= 4.1340e-1- 3.1340e-1- 5.9428e-1= 6.0390e-1= 5.8641e-1= 6.4550e-1 

10 3.5351e-1- 7.3264e-1+ 4.7492e-1- 6.6023e-1+ 7.3049e-1+ 6.4574e-1+ 7.6831e-1+ 6.0182e-1 

15 3.1315e-1= 8.0908e-1+ 2.6031e-1= 1.3803e-1- 5.0370e-1= 5.9803e-1+ 4.7872e-1= 4.5016e-1 

WFG9 

3 4.7174e-1- 5.2406e-1= 4.1875e-1- 4.6518e-1- 5.0118e-1= 4.4953e-1- 5.1217e-1= 5.3036e-1 

5 6.2958e-1= 6.8870e-1+ 4.7412e-1- 5.0087e-1- 5.9691e-1= 6.5333e-1+ 5.8794e-1= 6.0455e-1 

8 5.8945e-1= 7.1263e-1+ 5.1005e-1- 4.5449e-1- 5.9353e-1= 7.5702e-1+ 4.6348e-1- 6.8456e-1 

10 5.9791e-1- 7.5742e-1+ 4.5978e-1- 5.4090e-1- 6.5373e-1= 7.1634e-1+ 4.6035e-1- 6.8245e-1 

15 4.3079e-1- 4.9298e-1- 2.2505e-1- 2.5606e-1- 4.6802e-1- 5.2202e-1- 4.6465e-1- 5.3129e-1 

+/-/= 3/18/24 5/14/26 1/23/21 3/26/16 6/5/34 10/20/15 9/16/20  

 

Table 8. The statistical results of IGD values measured by WFG1-WFG9 

Problem M RVEA PREA MOEA/D-AWA MOEA/DD NSGAIII KnEA MOEA/D-UR MaOEA-AWM 

WFG1 

3 8.1631e-1- 5.5569e-1= 5.2513e-1= 1.2166e+0- 5.8627e-1= 1.0257e+0- 4.9986e-1+ 5.0850e-1 

5 1.2307e+0- 9.6938e-1+ 9.3826e-1+ 1.7597e+0- 1.2859e+0= 1.3485e+0= 9.6927e-1+ 1.0055e+0 

8 1.8460e+0- 1.5965e+0= 1.7867e+0= 2.3683e+0- 1.9113e+0- 1.6228e+0= 1.8628e+0- 1.5699e+0 

10 1.7456e+0= 1.7985e+0- 1.9967e+0- 2.4395e+0- 2.0281e+0- 1.9438e+0- 1.6962e+0= 1.6359e+0 

15 2.3958e+0= 2.5368e+0- 2.4711e+0- 2.6234e+0- 2.5918e+0- 3.1500e+0- 2.4891e+0 - 2.3677e+0 

WFG2 3 2.2399e-1- 2.1379e-1- 2.8227e-1- 1.9767e-1= 1.8056e-1= 2.5333e-1- 2.1360e-1- 1.7776e-1 
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5 5.1530e-1= 4.9819e-1= 8.3334e-1- 5.4438e-1= 5.1160e-1= 7.4515e-1- 5.1694e-1= 5.0006e-1 

8 1.2085e+0- 1.0936e+0= 1.3771e+0- 1.6861e+0- 1.3115e+0- 1.1255e+0= 1.0977e+0= 1.0819e+0 

10 1.3293e+0- 1.3428e+0- 1.8294e+0- 1.9555e+0- 1.5038e+0- 1.3368e+0- 1.3237e+0- 1.2782e+0 

15 2.1764e+0- 1.9562e+0= 3.1470e+0- 2.2847e+0- 3.5516e+0- 2.9613e+0- 1.9232e+0= 1.8429e+0 

WFG3 

3 2.4013e-1- 1.0517e-1= 1.2786e-1= 4.0442e-1- 1.4584e-1= 3.0496e-1- 1.1141e-1= 1.0107e-1 

5 7.2474e-1= 5.2399e-1+ 9.2763e-1= 9.6458e-1= 8.2867e-1= 8.4866e-1= 7.0396e-1 = 7.1406e-1 

8 2.7478e+0= 1.5684e+0+ 2.3606e+0= 2.7994e+0= 1.3813e+0+ 1.3493e+0+ 2.6997e+0- 2.6410e+0 

10 5.1248e+0= 5.9651e-1+ 3.5469e+0= 3.4370e+0= 2.1150e+0+ 2.0139e+0+ 3.3670e+0- 3.0682e+0 

15 7.3722e+0= 9.3073e-1= 6.9486e+0= 6.9188e+0= 5.2147e+0= 5.0551e+0+ 8.6320e-1+ 6.3920e+0 

WFG4 

3 2.6966e-1= 2.6937e-1= 2.9278e-1- 2.4768e-1= 2.2922e-1= 3.2408e-1- 2.4738e-1= 2.2759e-1 

5 1.2247e+0= 1.1917e+0= 1.8478e+0- 1.3739e+0= 1.2285e+0= 1.8257e+0- 1.3693e+0- 1.2145e+0 

8 3.6798e+0= 3.4917e+0+ 3.8268e+0= 3.9381e+0= 3.5854e+0= 3.4895e+0+ 3.1813e+0+ 3.6241e+0 

10 6.0253e+0= 6.9341e+0= 7.3056e+0- 6.6127e+0= 5.8368e+0= 5.2553e+0+ 6.3447e+0= 6.0065e+0 

15 1.2743e+1= 1.9681e+1= 1.8201e+1- 1.2114e+1= 1.1436e+1= 8.6924e+0+ 1.1385e+1= 1.2014e+1 

WFG5 

3 2.6141e-1- 2.8387e-1- 2.9281e-1- 2.5137e-1= 2.3644e-1= 3.2069e-1- 2.6977e-1= 2.1462e-1 

5 1.2142e+0= 1.3671e+0= 1.7530e+0- 1.3691e+0= 1.2052e+0= 1.9331e+0- 1.2035e+0= 1.1879e+0 

8 3.6832e+0- 3.5493e+0- 3.6493e+0- 4.1008e+0- 3.5446e+0- 3.4870e+0- 3.0809e+0= 3.0526e+0 

10 6.1066e+0- 5.4666e+0- 7.0031e+0- 7.1182e+0- 5.8886e+0- 5.1921e+0= 6.3912e+0- 5.1013e+0 

15 1.1362e+1= 1.2137e+1= 1.3535e+1= 1.2122e+1= 1.1874e+1= 8.7065e+0+ 1.1814e+1= 1.2064e+1 

WFG6 

3 3.0452e-1- 2.6388e-1= 3.4885e-1- 3.0491e-1- 2.7511e-1= 3.9093e-1- 2.7469e-1= 2.7130e-1 

5 1.2550e+0= 1.3575e+0= 1.8355e+0- 1.3964e+0= 1.2443e+0= 1.9153e+0- 1.2476e+0= 1.2395e+0 

8 3.9119e+0- 3.3696e+0= 3.7645e+0= 4.1766e+0- 3.6136e+0= 3.8017e+0- 3.2388e+0= 3.1363e+0 

10 6.7426e+0- 5.9576e+0= 7.1591e+0- 6.3529e+0- 6.0464e+0= 6.0736e+0= 5.8782e+0= 5.7979e+0 

15 1.6853e+1= 1.7199e+1- 1.6699e+1- 1.3740e+1= 1.2249e+1= 9.5692e+0+ 9.9260e+0+ 1.2261e+1 

WFG7 

3 2.7892e-1= 2.6358e-1= 3.0100e-1- 2.6046e-1= 2.3305e-1= 3.2774e-1- 2.5963e-1= 2.3245e-1 

5 1.2423e+0= 1.4635e+0= 1.9227e+0- 1.3873e+0- 1.2535e+0= 1.9029e+0- 1.2353e+0= 1.2212e+0 

8 3.6068e+0- 3.4637e+0= 3.8936e+0- 3.8983e+0- 3.5394e+0- 3.4956e+0= 3.1946e+0= 3.1863e+0 

10 5.8006e+0= 5.8013e+0- 7.3707e+0- 6.0095e+0- 5.8384e+0= 5.2583e+0= 5.6136e+0= 5.1467e+0 

15 1.4453e+1= 1.6311e+1+ 1.5845e+1- 1.1970e+1= 1.1273e+1+ 8.8075e+0+ 1.0507e+1+ 1.2751e+1 

WFG8 

3 3.8803e-1= 3.8617e-1= 3.7588e-1= 3.3315e-1= 3.2295e-1= 4.1605e-1- 3.3657e-1= 3.1133e-1 

5 1.3101e+0= 1.5249e+0= 1.8828e+0- 1.4145e+0= 1.3000e+0= 1.8645e+0- 1.3605e+0= 1.1652e+0 

8 3.8339e+0- 4.3325e+0- 4.3111e+0- 4.0627e+0- 3.9836e+0- 3.9269e+0- 3.6733e+0= 3.3056e+0 

10 6.4470e+0- 5.9512e+0- 7.7952e+0- 5.8113e+0= 6.2080e+0= 5.6750e+0= 6.6839e+0= 5.5133e+0 

15 1.3730e+1- 1.6357e+1- 1.8726e+1- 1.3255e+1- 1.2428e+1= 1.0099e+1= 1.4658e+1= 1.0076e+1 

WFG9 

3 2.8604e-1= 2.6538e-1= 3.8444e-1- 2.9472e-1- 2.3937e-1= 3.2706e-1- 2.4618e-1= 2.2687e-1 

5 1.2081e+0= 1.3288e+0= 1.8635e+0- 1.3944e+0= 1.2277e+0= 1.8459e+0- 1.1582e+0= 1.1030e+0 

8 3.5447e+0= 3.2073e+0+ 3.7854e+0= 4.1515e+0= 3.6247e+0= 3.2950e+0+ 3.5953e+0- 4.2771e+0 

10 5.8631e+0= 7.0176e+0= 6.7909e+0- 6.2099e+0= 5.6230e+0+ 4.9467e+0+ 6.1165e+0= 6.0998e+0 

15 1.3449e+1= 1.1699e+1= 1.4175e+1- 1.2186e+1= 1.1397e+1= 8.7407e+0+ 1.0687e+1+ 1.1773e+1 

+/-/= 0/18/27 7/11/27 1/32/12 0/20/25 3/10/32 12/23/10 6/9/30  

 

Tables 7 and 8 show the HV and IGD values of MaOEA-AWM and the other seven algorithms in WFG1-9, and 

highlight the best data in bold. 

For WFG1, although the IGD performance of MaOEA-AWM is slightly better than other algorithms when there 

are more than 5 objectives, its performance is worse than that of PREA on 3 and MOEA/D-UR on 5 objectives. 

NSGAIII has the largest HV value on 15 objectives, and MaOEA-AWM has the largest HV value on other 

objectives. 

For WFG2, MaOEA-AWM has the best overall performance. On 5 objectives, there is no obvious difference in 

the performance of other algorithms. 

For WFG3, the performance of MaOEA-AWM is not idle. Its performance is similar to RVEA, MOEA/D-AWA, 

and MOEA/DD, and worse than PREA, KnEA, and MOEA/D-UR. And MOEA/D-UR obtained the smallest IGD 

value. 

For WFG4, MaOEA-AWM performed poorly in most cases and only performed well on three objectives. 

According to the performance of MaOEA-AWM on WFG3 and WFG4, it can be found MaOEA-AWM is easy 

to fall into the local optimum, which may be due to the fact that MaOEA-AWM does not change the main weight 

vector quickly. 

For WFG5, RVEA, MOEA/D-AWA, MOEADD, NSGAIII, and KnEA performed much worse than MaOEA-

AWM on 3-10 objectives. KnEA performed better on 15 objectives. 
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For WFG6, the performance of MOEA/D-UR and MaOEA-AWM is similar and better than other algorithms on 

3-10 objectives, but MaOEA-AWM is slightly worse than MOEA/D-UR on 15 objectives. 

For WFG7, the performance of MOEA/D-UR and MaOEA-AWM is nearly the same and better than other 

algorithms. 

For WFG8, MaOEA-AWM has shown significant performance. However, on 10 objectives, the HV value of 

MOEA/D-UR is larger than that of other algorithms, and PREA has the largest HV value on 15 objectives. 

For WFG9, in most objectives’ cases, the performance of PREA and KnEA is better than that of other algorithms, 

while the performance of MaOEA-AWM is better than that of other algorithms on 3 and 5 objectives. 

On the whole, in most cases, the performance of MaOEA-AWM is outstanding or very competitive among the 

seven algorithms. MaOEA-AWM outperforms the other seven compared algorithms for WFG2, WFG5-WFG8, 

while PREA, KnEA, and MOEA/D-UR offer better performance than MaOEA-AWM for WFG3, WFG4, and 

WFG9. 

CONCLUSION 

This paper proposed a many-objective evolutionary algorithm (called MaOEA-AWM) for handling many-

objective problems. MaOEA-AWM has a simple decomposition-based structure with few variable parameters. 

MaOEA-AWM's main feature is to adopt an angle-based criteria (APD) to select outstanding individuals in the 

environmental selection process. Based on APD, all outstanding weight vectors are selected as main weight 

vectors, and vectors around main weight vectors are their auxiliary weight vectors. The main weight vector and 

its auxiliary weight vectors are grouped into a partition. In the partition, the weight vector is adjusted; that is, the 

main weight vector is not moved, and auxiliary weight vectors gather around it. The purpose of vector adjustment 

is to maintain the diversity of search directions. 

MaOEA-AWM is contrasted with seven advanced MaOEAs against 16 problems from DTLZ, SDTLZ, and WFG 

to validate the effectiveness of APD selection and vector adaption in MaOEA-AWM. MaOEA-AWM performs 

well in the majority of cases, according to the results. 

However, MaOEA-AWM is easy to fall into the local optimum, which may be caused by the single evaluation 

indicator of the weight vector. The performance of MaOEA-AWM on MOPs in WFG is not very good. It may be 

further modified by increasing the weight vector evaluation indicator or changing the predetermined angle 

between the main and auxiliary weight vectors. 
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