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Abstract:  

To tackle the challenges of time efficiency and energy consumption in the context of production diversification 

and green manufacturing, GDMOAHA was developed to minimize the makespan and total energy 

consumption. First, a problem-specific heuristic, NEH-SE, was designed to improve the initial population's 

diversity and quality. In addition, the golden sine strategy has been implemented to achieve a good balance 

between exploration and exploitation. Third, the inclusion of the Cauchy variation enhances the algorithm's 

ability to find optimal values. Compared with other algorithms, GDMOAHA outperforms other algorithms in 

terms of convergence and diversity. Therefore, it can solve the problem well. 

Keywords: distributed flow shop, energy efficient scheduling, improved multi-objective artificial 

hummingbird algorithm, multi-objective optimization problem 

INTRODUCTION 

Over the past few years, the idea of sustainable manufacturing has attracted considerable focus, the integration of 

production scheduling with green manufacturing has emerged as a hot topic. Manufacturing is an important sector 

in terms of energy consumption, accounting for a significant portion of the total global energy use each year [1]. 

Effectively reducing energy consumption and improving energy utilization has gradually become the goal for an 

increasing number of countries and enterprises. The hybrid flow-shop scheduling problem (HFSP) is a classical 

problem model in the manufacturing industry. Zhang B et al. broaden the scope of energy-efficient HFSP by 

examining machines that have varying energy consumption rates, sequence-dependent setups, and inter-machine 

transport operations within the HFSP, and suggests a three-stage multi-objective approach based on 

decomposition (TMOA/D) to solve this problem [2]. Qin et al. investigated the Blocking Hybrid Flow Shop Group 

Scheduling Problem (BHFGSP) and introduced an iterative greedy algorithm designed to optimize the makespan. 

[3]. Wang Z et al. investigated the HFSP rescheduling problem under machine failure and introduced an improved 

multi-objective firefly algorithm to minimize productivity, power efficiency and manufacturing reliability [4]. 

Teng Y et al. proposed an improved co-evolutionary memetic algorithm (ICMA) based on the unconditional 

feasibility of HFSP (UFH) and all-active schedule (AAS) to solve HFSP [5]. The HFSP has been well-studied, 

and many results have been obtained. 

Today, when facing uncertain market conditions and fluctuating customer demands, a single-factory production 

model is hardly sufficient to meet production needs. A large number of companies have shifted their 

manufacturing model from a single plant to having a geographically dispersed multi-plant supply chain. 

Distributed production planning and scheduling has been widely adopted such as semiconductor manufacturing, 

automotive industry, pharmaceutical industry, concrete industry, textile industry [6]. The Distributed Hybrid 

Flow-Shop Scheduling Problem (DHFSP) adheres to the distributed production paradigm and serves as an 

extended problem of the HFSP. DHFSP includes the task of allocating jobs to suitable factories. Multiple factories 

work together to produce a set of jobs. The HFSP model is used on the shop floor of each factory. When a job is 
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designated to a particular factory, it implies that all processing stages of the job must be executed exclusively 

within the factory. Consequently, the DHFSP encompasses a broader set of constraints and presents a more 

intricate set of research challenges than the traditional HFSP. The majority of scholars currently utilize intelligent 

optimization algorithms to address the problem of DHFSP. Li Y et al. enhanced the Discrete Artificial Bee Colony 

(DABC) algorithm to minimize the makespan DHFSP. [7]. Cai J et al. introduced an innovative version of the 

shuffled frog-leaping algorithm, enhanced with memeplex quality (MQSFLA), aimed at reducing both total 

tardiness and makespan in DHFSP, considering the impact of sequence-dependent setup times [8]. Wang J and 

Wang L proposed a cooperative modular algorithm (CMA) based on reinforcement learning (RL) to solve energy-

aware DHFSP [9]. Later, Wang J and Wang L further proposed a Collaborative Modelling Algorithm (CMA) with 

a local reinforcement strategy incorporating cooperative search and Q-learning to optimize the Energy-Aware 

Distributed Welding Shop Scheduling problem (EADFFASP) [10]. Cui H et al. proposed an Improved Multi-

Population Genetic Algorithm (IMPGA) to optimize makespan for the Distributed Heterogeneous HFSP [11]. R. 

Li et al. tackled the DHHFSP with multiple work priorities by developing a dual deep Q-network based co-

evolutionary (D2QCE) approach, aiming to minimize both the total weighted delay and total energy consumption 

[12]. Lu C et al. formulated a mixed integer linear programming (MILP) model for DHFSP. Subsequently, an 

Improved Iterative Greedy (IIG) algorithm was devised to address this DHFSP [13]. Later Lu C et al. made the 

first attempt to study the energy-aware DHFSP. A hybrid multi-objective iterative greedy (HMOIG) approach 

was proposed to minimize the manufacturing span and total energy consumption [14]. In summary, numerous 

studies have been conducted on the DHFSP in the past, yet research on energy-efficient hybrid flow shops with 

different numbers of machines across different plants remains sparse. The development of efficient algorithms for 

optimizing makespan and total energy consumption (TEC) in this context presents a challenging and significant 

task. 

MOAHA identifies suitable solutions by modeling hummingbirds' flight and foraging strategies. MOAHA has 

demonstrated effectiveness in solving optimization problems [15-17]. The 'no free lunch' theorem posits that 

optimization algorithms have different application scenarios [18]. It is important to choose the right optimization 

algorithm for different optimization problems. Compared with other algorithms, MOAHA requires less tuning of 

parameters and demonstrates strong adaptability across different scenarios. MAOHA improves its ability to 

explore and exploit by having three unique flight skills and employing three distinct foraging strategies. 

Furthermore, it incorporates access tables into the iteration process, continuously updating the information 

regarding hummingbird visits to food sources. It assists hummingbirds in locating suitable food sources [15]. 

Therefore, considering these factors, MOAHA differs significantly from existing algorithms. However, MOAHA 

has not yet been applied to scheduling problems. In this paper, the Golden Sine Multi-Objective Artificial 

Hummingbird Algorithm (GDMOAHA) is proposed based on MOAHA and successfully applied to solve the 

scheduling problem. 

The main contributions of this paper are summarized below: 

(1) To solve the multi-objective DHFSP model that describes energy consumption in practical manufacturing, a 

GDMOAHA with hybrid initialization and golden sine is designed specifically. 

(2) Unlike random initialization adopted by most multi-objective algorithms, a hybrid initialization method with 

NEH-SE and random is designed to produce high-quality populations. 

(3) To overcome the problem of distance from food sources at the initial stage of MOAHA, the golden sine that 

can reduce search space is introduced in GDMOAHA. 

In Section 2, the mathematical model is thoroughly outlined. In Section 3, the improved part is introduced. In 

Section 4, the experimental setup is explained. In Section 5, the effectiveness of the improvement and the 

performance of solving DHFSP is tested. 
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PROBLEM DESCRIPTION AND FORMULATION 

Problem Description 

Table 1. Example of the DHFSP 

Job 
Process time of each stage (pj,k)  

No. of machines Run Power (ppf,k,i)  
J1 J2 J3 J4 J5 J6 

Stage1 10 7 5 4 5 9 2/3 

1/2 

8,7/9,5,6 

4/6,8 Stage2 6 5 4 5 6 3 

 

 

Figure 1. A possible scheduling Gantt chart and power consumption. 

The solution to the DHFSP is achieved by addressing three primary subproblems: identifying a factory for the job, 

determining the machines for the job at each stage, and establishing a suitable sequence of jobs on the machines. 

Table 1 provides an example of the processing time required for job processing and the energy consumed per unit 

of time for machine processing. The two factories have 2 and 3 equivalent parallel machines in the first stage, 

respectively. In the second stage, there are 1 and 2 equivalent parallel machines respectively. The idle energy 

consumption of all machines is set to 1. Figure 1. shows a feasible scheduling Gantt chart and a trend plot of 

energy consumption over time with current scheduling. As shown in Figure 1. (a), J1 and J4 are processed in F1. 

Specifically, J1 is assigned to M1,1,1 and J4 to M1,1,2 in the first stage. J1 and J4 are assigned to M1,2,1 in the second 

stage. In Figure 1. (b), the jobs J2, J3, J5 and J6 are processed in F2. Specifically, J2 is assigned to M2,1,1, J3 is 

assigned to M2,1,3, J5 and J6 are assigned to M2,1,2. In the second stage, J2 and J3 are assigned to M2,2,1, J5 and J6 are 

assigned to M2,2,2.  

If Oj, k is processed on machine Mf,k,i, the energy consumption of the machine for processing the job is work time 

multiplied by energy consumption. For example, the completion times for F1 and F2 are 16 and 17, respectively. 

So Cmax is 17. During the machining of job J2, the processing time of J2 is 7, and M2,1,1 energy consumption 

during processing is 9. The energy consumption for machining is calculated as 7 × 9 = 63. The total energy 

consumption of the machines at present is equal to the sum of their energy consumption during processing and 

their energy consumption while idle. The energy consumption at time 8 in F1 is P(t=8) =pp1,1,1+ pp1,2,1=12. 

Therefore, the TEC according to Figure 1. is TEC= (15×4+5×12+8×1+6×4) +(20×5+2×28+4×18+3×12+6×8) 

=464. 

Mathematical Formulation 

The definition of DHFSP is as follows. It consists of F factories. Each factory has a different processing capacity. 

It is assumed that there are n jobs to be processed, with each job needing to be allocated to one of F factories and 

then processed on parallel machines. Each job requires pj,k units of processing time at each stage. Furthermore, a 

job can only advance to the next stage upon completion of the previous one, and all subsequent processing must 

be conducted within the factory. The TEC of a machine encompasses both the energy consumption during the 

machining process and the idle energy consumption that occurs when the machine completes the current task and 

awaits the arrival of the next job. 
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Parameters: 

F: Number of factories. 

n: Number of jobs. 

m: Number of processes for the job. 

f: Index of 𝐹 factories, 𝑓 ∈ {1,2, . . . 𝐹}. 

j: Index of the jobs, 𝑗 ∈ {1,2, . . . 𝑛}. 

k: Index of process, 𝑘 ∈ {1,2, . . .𝑚}. 

Oj,k: Represents the kth process for the jth job. 

lf,k: Number of machines in the kth process in the fth factory. 

Mf,ki: Represents the ith machine for the k process in the f factory. 

pj,k: Standard machining time of the ith job in the kth process. 

ppf,k,i: The energy consumption per unit for the processing on the ith machine in the kth process at the fth factory. 

spf,k,i: Energy consumption per unit at no load for machine ith in process kth in the fth factory. 

𝐸𝑐𝑓,𝑘,𝑖: Energy consumption in the fth factory for the kth machine processing of the ith process. 

𝐸𝑢𝑓,𝑘,𝑖: Energy consumption of the kth machine of the ith process in the fth factory at idle. 

Sj,k: Start time of the kth process for job jth. 

xf,j: When the value is 1, job jth is assigned to factory fth, otherwise it is equal to 0. 

yf,k,j,i: When the value is 1 it means that the kth process of the job jth is assigned to the ith machine of the factory 

fth, otherwise it is equal to 0. 

zf,k,j,j’: The value of 1 indicates that job jth is machined before job j’th in process kth within factory fth. 

Cj,k: End time of the kth process of job jth. 

TEC: Total energy consumption. 

Cmax: Maximum completion time for a schedule 

U: a large positive number 

The mixed integer linear programming model for energy-efficient DHFSP is defined in the following equation, 

with optimization objectives of Cmax and TEC. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐶𝑚𝑎𝑥)                                                                      (1) 

Subject to: 

∑ 𝑥𝑓,𝑗 = 1,∀𝑗𝐹
𝑓=1                                                                       (2) 

∑ 𝑦
𝑙𝑓,𝑘

𝑖=1 𝑓,𝑘,𝑗,𝑖
= 𝑥𝑓,𝑗 , ∀𝑓, 𝑗, 𝑘                                                           (3) 

𝑆𝑗,1 ≥ 0, ∀𝑗                                                                      (4) 

𝐶𝑗,𝑘 = 𝑆𝑗,𝑘 +∑ ∑ 𝑦𝑓,𝑘,𝑗,𝑖
𝑙𝑓,𝑘

𝑖=0
𝐹
𝑓=0 × 𝑝𝑗,𝑘, ∀𝑗, 𝑘                                                    (5) 

𝑧𝑓,𝑘,𝑗,𝑗′ + 𝑧𝑓,𝑘,𝑗′,𝑗 ≤ 1, ∀𝑓, 𝑘, 𝑗, 𝑗′                                                               (6) 

𝑆𝑗,𝑘+1 ≥ 𝐶𝑗,𝑘 , ∀𝑗, 𝑘                                                        (7) 

𝑧𝑓,𝑘,𝑗,𝑗′ + 𝑧𝑓,𝑘,𝑗′,𝑗 ≥ 𝑦𝑓,𝑘,𝑗,𝑖 + 𝑦𝑓,𝑘,𝑗′,𝑖 − 1,∀𝑓, 𝑘, 𝑗′ > 𝑗                                      (8) 
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𝑆𝑗′,𝑘 − 𝐶𝑗,𝑘 +𝑈 × (3-𝑦𝑓,𝑘,𝑗,𝑖 − 𝑦𝑓,𝑘,𝑗‘,𝑖 − 𝑧𝑓,𝑘,𝑗,𝑗′) ≥ 0∀𝑗 ≠ 𝑗′, 𝑘, 𝑓, 𝑖 ∈ {1,2, . . . , 𝑙𝑓,𝑘}                  (9) 

𝐶𝑗, 𝑘𝑚𝑎𝑥                                                                      (10) 

𝐸𝑐𝑓,𝑘,𝑖 = ∑ 𝑦𝑓,𝑘,𝑗,𝑖
𝑛
𝑗=1 × 𝑝𝑝𝑓,𝑘,𝑖 × 𝑝𝑗,𝑘𝑘, 𝑓, 𝑖 ∈ {1,2, . . . , 𝑙𝑓,𝑘}                                       (11) 

𝐸𝑢𝑓,𝑘,𝑖 = 𝑠𝑝𝑓,𝑘,𝑖{𝑚𝑎𝑥( 𝐶𝑗,𝑘 × 𝑦𝑓,𝑘,𝑗,𝑖) − 𝑚𝑖𝑛( 𝑆𝑗,𝑘 × 𝑦𝑓,𝑘,𝑗,𝑖) −∑𝑦𝑓,𝑘,𝑗,𝑖

𝑛

𝑗=1

× 𝑝𝑗,𝑘} 

∀𝑓, 𝑘, 𝑖 ∈ {1,2, . . . , 𝑙𝑓,𝑘}                                                       (12) 

𝑇𝐸𝐶 = ∑ ∑ ∑ (𝐸𝑐𝑓,𝑘,𝑖
𝑙𝑓,𝑘

𝑖=1
𝑚
𝑘=1

𝐹
𝑓=1 + 𝐸𝑢𝑓,𝑘,𝑖)                                            (13) 

𝑥𝑓,𝑗 ∈ {0,1}, ∀𝑓, 𝑗                                                              (14) 

𝑦𝑓,𝑘,𝑗,𝑖 ∈ {0,1}, ∀𝑓, 𝑘, 𝑗, 𝑖 ∈ {1,2, . . . , 𝑙𝑓,𝑘}                                       (15) 

𝑧𝑓,𝑘,𝑗,𝑗′ ∈ {0,1}, ∀𝑓, 𝑘, 𝑗, 𝑖                                                    (16) 

(1) The optimization objectives are Cmax and TEC. (2-3) Each operation of every job is assigned to a machine. 

(4) Each process of a job can only be assigned to 1 machine of the corresponding process. (5) The start processing 

time for each job can only be greater than zero. (6) The start time of the next process for the same task can only 

be after the completion time of the previous process. (7-9) Only one job is processed per machine. (10) Maximum 

completion time is defined. (11-12) The energy consumption during processing and the idling is calculated. (13) 

The TEC of the whole process is calculated. (14-16) Binary decision variables are represented. 

GDMOAHA 

In this section, an improved MOAHA (named GDMOAHA) is proposed. In GDMOAHA, Initialization is changed 

and the movement pattern is modified. One variation of the strategy is added. These modifications have enhanced 

the performance in solving problems. 

Framework 

The framework of GDMOAHA is shown in Algorithm 1. The main differences of GDMOAHA and MOAHA are 

as follows. The hybrid initialization is done with NEH-SE and random generation. The golden sine strategy is 

used in the early stage of GDMOAHA. The Cauchy variant is incorporated into the GDMOAHA to facilitate the 

escape from local optima. 

Algorithm 1. Pseudo-code of GDMOAHA 

1 Input: Max_Iteration, mu, n, d, Low, Up  

2 Output: Archive 

3 Initialise population with hybrid initialisation 

4 Initialise Visit table 

5 Initialize the EA with non-dominated solutions. 

6 While current iterations (t)<Max_ Iteration 

7  If t<1/3 Max_ Iteration 

8   Golden-Sine 

9  Else 

10   Hummingbird mobile with stage1 at Algorithm 1 

11  End 

12  Cauchy variation 

13  Hummingbird mobile with stage2 at Algorithm 1 

14  Sort all the solutions according to crowing distance 

15  DECD maintenance EA 

16 End 

 

 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
67 

Vol: 2024 | Iss: 12| 2024 
 

Encoding and Decoding 

A DHFSP is equivalent to several HFSPs, where each job should be assigned to the proper machine in the proper 

factory. In HFSPs, the arrangement of the first process can directly affect the subsequent stages. Encoding the 

first process can simplify the solution space [19]. The scheme of real number coding that is commonly used in 

HFSP is adopted in GDMOAHA. 

 

Figure 2. Example of encoding diagrams 

An example of encoding is illustrated in Figure 2. The number of machines Mmax for the first process in each 

factory in the DHFSP is determined. The sequence of factory indexes F= {F1, F2...., Fn}. The sequence of machine 

index M = {M1, M2, ..., Mmax}. The sequence of job index J = {J1, J2, ..., Jmax}. For each job, Ji is assigned to 

random numbers in the range [1, Mmax].  

An example of encoding diagrams is given in Figure 2. Each of the blocks denotes a job. F1 and F2 have {M1, M2, 

M3} and {M4, M5} machines in the first process, respectively. J3 is assigned to M1. J5 and J7 is assigned to M2. J2 

and J4 are assigned to M3. J6 and J8 are assigned to M4. J1 is assigned to M5. There are 4 jobs processed in F1, and 

there are 4 jobs processed in F2. Jobs are sequenced on M3 with J4 and J2. Jobs are sequenced on M4 with J8, J6. 

Hybrid Initialization 

Optimal solutions are generated more quickly when the initial population is of high quality. The Nawaz-Enscore-

Ham (NEH) heuristic is one of the most efficient heuristics for HFSPs [20]. In GDMOAHA, an improved NEH-

SE heuristic is proposed based on NEH. The framework of NEH-SE is as follows. 

Algorithm 2. NEH-SE 

Output: A complete solution π’ 

1 π is generated by sorting each job in descending order according to its total completion time. π= {π1, π2, 

…, πn} 

2 For ith from 1 to πn 

3  The probability of adding an equally spaced job to each job in π 

4 End 

5 The empty set π' 

6 For ith from 1 to πn 

7  If ith probability> random  

8   ith job is inserted into all possible locations in π’ 

9   Assigned to machine with ME 

10   Select the sequence with the smallest time 

11  Else 

12   Assign the next job 

13  End 

14 End 

 

1. The sequence π is generated in descending order based on each job's total completion time, the one with the 

longest remaining processing time is completed first. 
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2. To enhance population diversity, a probability distribution with equal spacing is assigned among jobs. The 

higher a job's position in the sequence π, the greater the likelihood assigned to it. Subsequently, the job must be 

compared to a random number within the range (0,1). If the probability of the job is high, the job is assigned. 

Otherwise, the job is exchanged with the next job position. 

3. Jobs are sequentially extracted from π and embedded in all possible positions in π'. The sort that minimizes the 

makespan is chosen as the new sequence. The job is assigned to idle machines according to ME rules. This 

operation goes on until every job has been incorporated into the new sequence π’. 

The NEH-SE heuristic and random population initialization were used cooperatively to generate half of the initial 

population. The non-dominated solutions of the iterative process are stored in a Pareto archive. 

Golden Sine Strategy 

The golden sine strategy is incorporated into the process of updating positions. It narrows the search space using 

the golden ratio. Since the actual DHFSP problem is discrete, the golden sine strategy can significantly enhance 

the search efficiency by narrowing down the search space. The golden-sine strategy is introduced as a new way 

of moving to improve search performance in the pre-iteration period. The golden sine in Eq. 24 is updated: 

𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑(𝑡)|𝑠𝑖𝑛( 𝑟1)| + 𝑟2 𝑠𝑖𝑛( 𝑟1)|𝑥1𝑃
𝑑(𝑡) − 𝑥2𝑋𝑖

𝑑(𝑡)|                      (17) 

𝑥1 = 𝑎𝜏 + 𝑏(1 − 𝜏)                                                          (18) 

𝑥2 = 𝑏𝜏 + 𝑎(1 − 𝜏)                                                          (19) 

Where r1 and r2 are random numbers, 𝑟1 ∈ [0,2𝜋] determines the distance an individual moves in the next 

iteration. 𝑟2 ∈ [0, 𝜋] determines the update direction of the individual position for the next iteration. x1 and x2 are 

coefficients obtained by introducing the golden section number. x1 and x2 reduce the search space and lead 

individuals to gradually converge to the optimal value. x1 and x2 are obtained from Eqs. 25 & 26. The initial 

values of a and b are -π and π, respectively. 𝜏is the golden section
√5−1

2
. 

Variation Strategy 

After guided foraging and territorial foraging, some hummingbirds randomly search for superior food sources 

near their current food source. Therefore, the Cauchy Variation strategy is introduced in the updating formula. 

The Cauchy variation updates as follows [21]. 

𝑋𝑖,𝑗
𝑖+1 = 𝑋𝑏𝑒𝑠𝑡(𝑡) + 𝑐𝑎𝑢𝑐ℎ𝑦(0,1) ⊕ 𝑋𝑏𝑒𝑠𝑡(𝑡)                                     (20) 

Where cauchy (0,1) is the standard normal distribution function. 

Hummingbirds with the worst food sources will migrate to new food sources with the NEH-SE strategy. The 

migrated foraging updates are as follows. 

{
𝑤𝑜𝑟 ∈ 𝐹𝑒𝑛𝑑
𝑥𝑤𝑜𝑟(𝑡 + 1) = 𝑁𝐸𝐻 − 𝑆𝐸

                                                 (21) 

NEH-SE represents the initialization method that was introduced in section 3.3. 

EXPERIMENT SETUP 

Experiment Environment 

The experiments were tested with MATLAB on a computer with an Intel(R) Core (TM) i5-8300H CPU (2.30GHz) 

and 16GB of RAM. 

Test Problem and Settings 

To evaluate the performance, the EADHFSP test problem set established by Wang J is selected [9]. This problem 

set is widely used in HFSP and DHFSP [22, 23]. There are 450 specific problems in the problem set. 45 problems 

of different sizes are selected from the problem set for the experiment. The problem parameters are given as 
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follows. The number of factories, F, is chosen from the set {2, 3, 4, 5, 6}, the number of jobs, n, is chosen from 

{20, 50, 100}, and the number of stages, m, is chosen from {2, 5, 8}. The standard processing time for each 

instance is sampled from the range [10, 50]. The number of uniform parallel machines in stage s of factory F is 

selected from {1, 2, 3, 4, 5}. The power consumption is uniformly distributed from a set {5, 6, 7, 8, 9, 10}. 

Additionally, each machine's electricity consumption in standby mode is designated as 1. All the machines are 

equivalent machines and the machines are running at speed 1. To verify the model's correctness, the CPLEX 

Studio IDE was utilized to construct the model and verify its correctness using small-scale examples. The output 

from CPLEX Studio IDE confirms the model's correctness. 

Parameter Settings of Test MOEAs 

GDMOAHA mainly contains key parameters: (1) population size (PS), (2) probability variation (PV), (3) 

migration coefficient (MC). The effect of parameters on the performance of GDMOAHA was investigated with 

the design-of-experiment (DOE) experimental approach [24]. For each parameter four different scales were 

designed i.e. PS∈{60,80,100,120}, PV∈{0,0.02,0.08,0.1}, MC∈{n,1.5n,2n,3n}, n is the current population 

size. A total of L16(43) matrices are generated. 16 orthogonal matrices are selected among all matrices. To reduce 

randomness and variation across scales, a small-scale instance (f=3, n=50, s=2) and a large-scale instance (f=5, 

n=100, s=8) were selected. Each combination was run independently  

Table 2. Parameter index and HV value 

Experiment number 
Parameter level 

HVS HVL 
PS PV MC 

1 1 1 1 0.399 0.539 

2 1 2 2 0.483 0.624 

3 1 3 3 0.538 0.621 

4 1 4 4 0.597 0.556 

5 2 1 2 0.457 0.616 

6 2 2 1 0.491 0.656 

7 2 3 4 0.550 0.656 

8 2 4 3 0.585 0.615 

9 3 1 3 0.506 0.659 

10 3 2 4 0.597 0.671 

11 3 3 1 0.605 0.673 

12 3 4 2 0.629 0.641 

13 4 1 4 0.493 0.667 

14 4 2 3 0.561 0.673 

15 4 3 2 0.605 0.681 

16 4 4 1 0.629 0.660 

 

Table 3. Average HV and the rank of each parameter 

Experiment number 
Small Large 

PS PV MC PS PV MC 

1 0.505 0.464 0.529 0.585 0.620 0.632 

2 0.521 0.532 0.536 0.636 0.654 0.641 

3 0.574 0.572 0.547 0.661 0.655 0.642 

4 0.572 0.602 0.559 0.670 0.615 0.631 

Delta 0.069 0.138 0.018 0.085 0.040 0.01 

Rank 3 4 3 4 3 3 

 

10 times and terminated at 150 iterations. The Pareto approximation set is recorded at the end of the GDMOAHA 

run. Table 2 lists the HV values for small scale instances (HVS) and large scale instances (HVL). The averages 

of the parameters are presented in Table 3, with Delta representing the maximum gap between different levels of 

the parameter. Figure 3. shows the trend of the factor levels for the three key parameters. The size of Delta 

indicates the impact of the current parameter on performance. Table 3 indicates that PM exerts the most significant 
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influence, with PS coming in second. Therefore, it is recommended to select the following parameters in all cases 

PS = 100, PV = 0.08, MC = 2n. 

 

Figure 3. Main effects plot for the GDMOAHA, average response values for (a) small-scale instances and (b) 

large-scale instances. 

Table 4. Parameters setting of algorithms. 

Algorithms Parameters 

MOPSO c1 = 1, c2 = 1, w=0.4, pop = 100 

NSWOA pop = 100, b=1, 𝑟 ∈ [0,1] 
IMA a1= a2= a3=1.5, fl =1, gmin=0.4, gmax=1.3, male mayfly=50, female mayfly=50 

 

In the following experiment, GDMOAHA had a population size of 100. All problems were run independently 20 

times. Each run consists of 150 iterations. Table 4 gives the specific parameter settings of the other multi-objective 

algorithms. 

Evaluation Indicator  

Hyper volume (HV) is used as a measure that reflects both convergence and diversity of algorithms [25]. The 

coverage and distance metrics of the solution set are used to compare the algorithms. The point (1, 1) is used as a 

reference point. Large HV values represent good algorithm convergence and diversity. The calculation method of 

HV is shown as follows. 

𝐻𝑉(𝑓𝑟𝑒𝑓, 𝑋) = 𝛬(⋃ [𝑓1(𝑋𝑛), 𝑓1
𝑟𝑒𝑓

]𝑋𝑛∈𝑋 ×. . .× [𝑓𝑚(𝑋𝑛), 𝑓𝑚
𝑟𝑒𝑓

])                                (22) 

Generational Distance (GD) is a widely used metric in multi-objective optimization. It assesses how close the 

solution set is to the true Pareto frontier by calculating the distance.  A lower GD value indicates that the solution 

set is nearer to the actual Pareto frontier. 

𝐺𝐷(𝑆, 𝑃) =
1

|𝑆|
∑ 𝑚𝑖𝑛𝑠∈𝑆‖𝑠 − 𝑝𝑖‖
|𝑃|
𝑖=1                                         (23) 

RESULTS AND ANALYSIS 

This section presents experiments to evaluate the performance of GDMOAHA against MOPSO, IMA and 

NSWOA under the same conditions. 
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Comparison of Strategy Effectiveness 

Table 5. Comparison on the average HV between GDMOAHA and MOAHA 

F/n/s 
GDMOAHA MOAHA p 

HV GD HV GD pHV pGD 

2/20/2 0.6932 0.0054 0.6718 0.0182 0.01% 0.01% 

2/20/5 0.5613 0.0075 0.5557 0.0066 0.01% 45.50% 

2/20/8 0.4376 0.0124 0.4557 0.0248 0.01% 0.12% 

2/50/2 0.6835 0.0151 0.4611 0.0218 0.01% 2.28% 

2/50/5 0.6545 0.0223 0.4451 0.0392 50.20% 4.38% 

2/50/8 0.5679 0.0220 0.5269 0.0374 0.02% 1.11% 

2/100/2 0.6716 0.0126 0.4702 0.0128 0.01% 79.40% 

2/100/5 0.5252 0.0420 0.4110 0.0379 0.01% 79.40% 

2/100/8 0.3811 0.0217 0.1110 0.0387 0.01% 0.90% 

3/20/2 0.7236 0.0118 0.7170 0.0174 0.01% 6.20% 

3/20/5 0.6485 0.0046 0.6475 0.0132 0.01% 0.01% 

3/20/8 0.5256 0.0095 0.5334 0.0098 0.01% 55.00% 

3/50/2 0.4939 0.0151 0.3929 0.0269 21.80% 1.52% 

3/50/5 0.7077 0.0055 0.6577 0.0139 85.20% 0.80% 

3/50/8 0.5788 0.0052 0.5118 0.0131 1.11% 0.02% 

3/100/2 0.5023 0.0158 0.4268 0.0339 0.01% 4.79% 

3/100/5 0.5252 0.0154 0.3546 0.0131 0.01% 31.30% 

3/100/8 0.5061 0.0110 0.2963 0.0401 0.01% 0.01% 

4/20/2 0.7375 0.0156 0.7079 0.0190 0.01% 19.10% 

4/20/5 0.6973 0.0119 0.6807 0.0097 0.01% 8.59% 

4/20/8 0.5847 0.0091 0.5363 0.0130 0.01% 29.60% 

4/50/2 0.7547 0.0089 0.7498 0.0479 0.01% 0.01% 

4/50/5 0.5545 0.0074 0.4966 0.0094 0.01% 1.69% 

4/50/8 0.6441 0.0092 0.4854 0.0231 0.01% 0.17% 

4/100/2 0.7412 0.0113 0.6197 0.0165 6.74% 0.25% 

4/100/5 0.6645 0.0110 0.5600 0.0202 0.01% 7.31% 

4/100/8 0.5841 0.0142 0.3629 0.0176 0.01% 41.10% 

5/20/2 0.7394 0.0056 0.6924 0.0179 0.01% 0.03% 

5/20/5 0.5046 0.0148 0.4338 0.0323 0.01% 0.02% 

5/20/8 0.6157 0.0105 0.5285 0.0175 0.01% 3.04% 

5/50/2 0.6683 0.0120 0.4530 0.0189 0.01% 4.69% 

5/50/5 0.7331 0.0051 0.6229 0.0278 50.20% 0.02% 

5/50/8 0.5934 0.0088 0.5398 0.0128 0.02% 62.70% 

5/100/2 0.6464 0.0181 0.5850 0.0243 0.01% 17.90% 

5/100/5 0.5164 0.0110 0.4628 0.0232 0.01% 0.19% 

5/100/8 0.5950 0.0048 0.4644 0.0093 0.01% 4.79% 

6/20/2 0.7222 0.0079 0.7005 0.0203 0.02% 0.07% 

6/20/5 0.6659 0.0174 0.4640 0.0093 0.01% 0.51% 

6/20/8 0.5437 0.0152 0.3762 0.0194 0.01% 57.50% 

6/50/2 0.6785 0.0146 0.6317 0.0466 0.25% 0.02% 

6/50/5 0.7226 0.0098 0.5634 0.0173 0.01% 2.28% 

6/50/8 0.5892 0.0071 0.5064 0.0206 0.01% 0.01% 

6/100/2 0.6743 0.0132 0.6174 0.0542 0.07% 0.01% 

6/100/5 0.7258 0.0115 0.3552 0.0117 0.01% 65.40% 

6/100/8 0.7278 0.0041 0.7020 0.0188 0.01% 0.03% 

 43/45 40/45   40/45 31/45 
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Figure 4. Boxplots of the average HV between GDMOAHA and MOAHA. 

To illustrate the benefits of the optimization strategy, GDMOAHA is compared with the original MOAHA. The 

parameter settings are the same as those in Section 5.3. The best results are in bold. Table 5 gives a comparison 

of the average HV and GD obtained by GDMOAHA and MOAHA. Figure 4. gives boxplots of the average HV 

between GDMOAHA and MOAHA. In most cases, the average HV value for GDMOAHA is greater than 

MOAHA, and almost all of the GD values for GDMOAHA are less than MOAHA. The Wilcoxon signed rank 

test p satisfies 95% confidence level that the samples are significantly different. This implies that the effectiveness 

and convergence of GDMOAHA are better than those of MOAHA in the vast majority of cases.  

Comparisons to Existing Algorithms and Analysis of the Experiment 

The effectiveness of GDMOAHA is verified by a comparison with the NSWOA, MOPSO, and IMA. Table 6 and 

Table 7 present the all-instance average HV and average GD metrics for each scale (F, n, s), along with the p-

values for all the data, as determined by the Wilcoxon signed rank test at a 95% confidence level. The p-values 

demonstrate the level of statistical difference among the non-dominated sequences of GDMOAHA, NSWOA, 

MOPSO, and IMA. The HV box diagrams for all instances are shown in Figure 5., Figure 6. compares the Pareto 

fronts of GDMOAHA, NSWOA, MOPSO, and IMA at different scales. From Table 6 and Figure 5., the HV value 

of GDMOAHA is much larger than that of NSWOA and MOPSO. And p is close to 0 in all instances. This 

indicates that GDMOAHA is much better than NSWOA and MOPSO in terms of convergence and diversity in 

all cases. In the vast majority of cases, the HV of GDMOAHA is greater than the HV of IMA. Only in rare cases 

(2/20/8, 4/50/5, 5/20/5, 6/20/2) is it less than or close to the HV value of GDMOAHA. It shows that the diversity 

and convergence of IMA is also excellent. However, in the vast majority of cases, GDMOAHA has better 

convergence and diversity than IMA. In Table 7, the four algorithms achieve the smallest GD values as follows: 

GDMOAHA (32/45), IMA (11/45), and MOPSO (2/45). The results show that in most instances, GDMOAHA 

has the smallest GD value and satisfies the 95% confidence level. This indicates that the GDMOAHA derived 

non-dominated solution set is more closely approximated to the true solution set. In summary, GDMOAHA can 

solve the problem better than MOPSO, NSWOA and IMA. 
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Table 6. Comparison on the average HV metric among GDMOAHA, NSWOA, MOPSO and IMA 

F/n/s 
HV 

GDMOAHA NSWOA p MOPSO p IMA p 

2/20/2 0.6932 0.4274 0.01% 0.5742 0.01% 0.6317 0.01% 

2/20/5 0.5613 0.2441 0.01% 0.4135 0.01% 0.5013 0.01% 

2/20/8 0.4376 0.2132 0.01% 0.3413 0.01% 0.4385 0.01% 

2/50/2 0.6835 0.2772 0.01% 0.3949 0.01% 0.4763 0.01% 

2/50/5 0.6545 0.1904 0.01% 0.2985 0.01% 0.4636 0.01% 

2/50/8 0.5679 0.1987 0.01% 0.1615 0.01% 0.3840 0.01% 

2/100/2 0.6716 0.0895 0.01% 0.4124 0.01% 0.4306 0.01% 

2/100/5 0.5252 0.1515 0.01% 0.1007 0.01% 0.3284 0.01% 

2/100/8 0.3811 0.1305 0.01% 0.1188 0.01% 0.1801 0.01% 

3/20/2 0.7236 0.3267 0.01% 0.6294 0.01% 0.6507 0.01% 

3/20/5 0.6485 0.2993 0.01% 0.4061 0.01% 0.5514 0.01% 

3/20/8 0.5256 0.2727 0.01% 0.4303 0.01% 0.4893 0.01% 

3/50/2 0.4939 0.1788 0.01% 0.3616 0.01% 0.3566 0.01% 

3/50/5 0.7077 0.1966 0.01% 0.2595 0.01% 0.5482 0.01% 

3/50/8 0.5788 0.1370 0.01% 0.3612 0.01% 0.4327 0.01% 

3/100/2 0.5023 0.1555 0.01% 0.1256 0.01% 0.4612 0.01% 

3/100/5 0.5252 0.1363 0.01% 0.1942 0.01% 0.5135 0.01% 

3/100/8 0.5061 0.0842 0.01% 0.0918 0.01% 0.3240 0.01% 

4/20/2 0.7375 0.4092 0.01% 0.4329 0.01% 0.7081 0.01% 

4/20/5 0.6973 0.3892 0.01% 0.4218 0.01% 0.6746 0.01% 

4/20/8 0.5847 0.3052 0.01% 0.4103 0.01% 0.5465 0.01% 

4/50/2 0.7547 0.3145 0.01% 0.4479 0.01% 0.6275 0.01% 

4/50/5 0.5545 0.3221 0.01% 0.2182 0.01% 0.6593 0.01% 

4/50/8 0.6441 0.2410 0.01% 0.2630 0.01% 0.5252 0.01% 

4/100/2 0.7412 0.2925 0.01% 0.4221 0.01% 0.5454 0.01% 

4/100/5 0.6645 0.1917 0.01% 0.1896 0.01% 0.4157 0.01% 

4/100/8 0.5841 0.1226 0.01% 0.1906 0.01% 0.3540 0.01% 

5/20/2 0.7394 0.3900 0.01% 0.4305 0.01% 0.6622 0.01% 

5/20/5 0.5046 0.3415 0.01% 0.3681 0.01% 0.5629 0.01% 

5/20/8 0.6157 0.2725 0.01% 0.3093 0.01% 0.5511 0.01% 

5/50/2 0.6683 0.3106 0.01% 0.3864 0.01% 0.6274 0.01% 

5/50/5 0.7331 0.3181 0.01% 0.4706 0.01% 0.5203 0.01% 

5/50/8 0.5934 0.1767 0.01% 0.2859 0.01% 0.5108 0.01% 

5/100/2 0.6464 0.3350 0.01% 0.2931 0.01% 0.6400 0.01% 

5/100/5 0.4897 0.1078 0.01% 0.0890 0.01% 0.4682 0.01% 

5/100/8 0.5772 0.1575 0.01% 0.2997 0.01% 0.4219 0.01% 

6/20/2 0.7222 0.5032 0.01% 0.4584 0.01% 0.7267 0.01% 

6/20/5 0.6659 0.5230 0.01% 0.3402 0.01% 0.6463 0.01% 

6/20/8 0.5437 0.2720 0.01% 0.3081 0.01% 0.4854 0.01% 

6/50/2 0.6785 0.2886 0.01% 0.3559 0.01% 0.5361 0.01% 

6/50/5 0.7226 0.2610 0.01% 0.3389 0.01% 0.6045 0.01% 

6/50/8 0.5892 0.1804 0.01% 0.3075 0.01% 0.4993 0.01% 

6/100/2 0.6743 0.1636 0.01% 0.3849 0.01% 0.4763 0.01% 

6/100/5 0.7258 0.2465 0.01% 0.3647 0.01% 0.5214 0.01% 

6/100/8 0.7278 0.2231 0.01% 0.4089 0.01% 0.5572 0.01% 

 41/45  45/45  45/45  42/45 
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Table 7. Comparison on the average GD metric among GDMOAHA, NSWOA, MOPSO and IMA 

F/n/s 
GD 

GDMOAHA NSWOA p MOPSO p IMA p 

2/20/2 0.0126 0.0457 0.02% 0.0438 0.19% 0.0412 0.01% 

2/20/5 0.0420 0.0407 60.10% 1.0000 0.14% 0.0134 5.69% 

2/20/8 0.0217 1.0000 0.01% 0.0326 6.74% 0.0665 0.01% 

2/50/2 0.0054 0.0228 0.01% 0.0174 0.08% 0.0113 0.03% 

2/50/5 0.0076 0.0515 0.01% 0.0166 0.51% 0.0157 1.37% 

2/50/8 0.0124 0.0333 0.05% 0.0513 0.01% 0.0110 39.10% 

2/100/2 0.0151 1.0000 0.03% 0.0177 94.00% 0.0144 97.00% 

2/100/5 0.0223 0.0444 0.46% 0.0361 0.28% 0.0266 73.70% 

2/100/8 0.0220 0.0271 31.30% 0.0212 79.40% 0.0222 73.70% 

3/20/2 0.0158 0.0548 0.03% 0.0583 0.01% 0.0164 68.10% 

3/20/5 0.0154 0.0472 0.02% 0.0231 6.74% 0.0203 7.31% 

3/20/8 0.0110 0.1600 0.01% 1.0000 6.25% 0.0258 0.09% 

3/50/2 0.0118 0.0305 0.05% 0.0217 3.33% 0.0175 97.00% 

3/50/5 0.0046 0.0260 0.01% 0.0209 0.01% 0.0091 0.46% 

3/50/8 0.0095 0.0634 0.01% 0.0307 0.01% 0.0172 4.79% 

3/100/2 0.0151 0.0533 0.01% 0.0230 15.60% 0.0190 11.70% 

3/100/5 0.0055 0.0244 0.01% 0.0278 0.01% 0.0124 0.06% 

3/100/8 0.0052 0.0485 0.01% 0.0331 0.01% 0.0063 20.40% 

4/20/2 0.0113 0.0253 0.13% 0.0124 62.70% 0.0125 12.60% 

4/20/5 0.0110 0.0349 0.01% 0.0235 0.10% 0.0102 50.20% 

4/20/8 0.0142 0.0777 0.01% 0.0357 0.01% 0.0221 3.66% 

4/50/2 0.0156 0.0180 70.90% 0.0229 33.20% 0.0090 1.87% 

4/50/5 0.0119 0.0198 10.00% 0.0182 1.52% 0.0144 47.80% 

4/50/8 0.0091 0.0249 0.32% 0.0324 0.06% 0.0134 15.60% 

4/100/2 0.0089 0.0316 0.13% 0.0166 1.69% 0.0652 0.01% 

4/100/5 0.0074 0.0296 0.01% 0.0212 0.04% 0.0326 0.01% 

4/100/8 0.0092 1.0000 0.01% 0.0235 0.01% 0.0163 2.28% 

5/20/2 0.0181 0.0663 0.02% 0.0181 70.90% 0.0163 33.20% 

5/20/5 0.0110 1.0000 0.02% 1.0000 0.01% 0.0244 0.32% 

5/20/8 0.0048 0.0599 0.01% 0.0167 0.02% 0.0077 0.13% 

5/50/2 0.0056 0.0168 0.04% 0.0229 0.07% 0.0126 0.28% 

5/50/5 0.0148 0.0729 0.01% 0.0307 0.10% 0.0129 65.40% 

5/50/8 0.0105 0.0286 0.17% 0.0219 0.64% 0.0070 50.20% 

5/100/2 0.0120 0.0536 0.01% 0.0240 0.06% 0.0076 3.04% 

5/100/5 0.0051 0.0401 0.01% 0.0202 0.01% 0.0502 0.01% 

5/100/8 0.0088 0.0534 0.01% 0.0280 0.01% 0.0066 4.38% 

6/20/2 0.0132 0.0341 0.02% 0.0104 33.20% 0.0454 0.02% 

6/20/5 0.0115 0.0173 7.31% 0.0221 4.00% 0.0257 6.74% 

6/20/8 0.0041 0.0204 0.01% 0.0220 0.01% 0.0604 0.01% 

6/50/2 0.0079 0.0211 0.01% 0.0203 0.01% 0.0145 0.72% 

6/50/5 0.0174 0.0192 85.20% 0.0132 12.60% 0.0069 0.03% 

6/50/8 0.0152 0.0434 0.15% 0.0218 7.31% 0.0159 62.70% 

6/100/2 0.0146 1.0000 0.22% 0.0211 10.80% 0.0342 0.64% 

6/100/5 0.0098 0.0435 0.01% 0.0371 0.04% 0.0117 21.80% 

6/100/8 0.0071 0.0721 0.01% 0.0423 0.01% 0.0123 2.76% 

 32/45  39/45  32/45  25/45 
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Figure 5. Boxplots of the average HV among GDMOAHA, NSWOA, MOPSO and IMA. 

 

Figure 6. The Pareto fronts obtained by GDMOAHA, NSWOA, MOPSO and IMA for instances with different 

scales. 
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From the comparison of Pareto frontiers given in Figure 6., the GDMOAHA solutions are closer to the optimal 

solution than those of MOPSO and IMA. Although NSWOA and GDMOAHA are similar in terms of Pareto 

solutions quality, GDMOAHA obtains more non-dominated solutions in the Pareto frontier in all examples. The 

convergence and diversity of GDMOAHA are significantly better than those of NSWOA. 

CONCLUSIONS AND FUTURE WORK 

The purpose of this article is to solve the multi-objective optimization problem for DHFSP to optimize makespan 

and total energy consumption. A GDMOAHA is proposed for solving DHFSP. The comparison was conducted 

with MOPSO, NSWOA, and IMA on 45 instances. In most of these instances, the solution set generated by 

GDMOAHA is optimal in terms of HV and GD. This indicates that GDMOAHA has superior convergence and 

diversity, and the solutions it finds are closer to the true solution set. 

In the future, the research will be further conducted. The actual production is affected by many factors. Therefore, 

more constraints can be added to the proposed energy efficient scheduling model to approach the actual production 

environment. Additionally, the algorithm has the potential to be expanded for addressing a variety of multi-

objective scheduling challenges.  
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