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Abstract:  

Traditional Chinese Medicine (TCM) symptom text classification refers to the use of computer technology and 

TCM texts to analyze content and identify different symptom categories, thereby automatically predicting 

patients’ descriptions of their feelings and physical examination results. However, TCM clinical texts are often 

lengthy and complex, with valuable insights often obscured by noise or redundancy. Additionally, TCM texts 

contain many obscure words and specialized terms, hindering traditional models from accurately interpreting 

TCM terminology. To resolve these challenges, this paper first creates a template using label masking, which 

is incorporated into the input sequence fed into the BERT model. A KAN linear layer is then applied to classify 

the contextual features extracted by BERT, with the KAN layer adjusting the activation function to better align 

with the data and enhance classification accuracy. After the original label prediction, a CorNet module is 

introduced to effectively mine the correlations between labels. F Lastly, the MLM task is included in the 

training phase, helping the model not only estimate label distributions but also predict labels from masked 

input positions. This enhances the training process and further improves the model’s robustness. Experiments 

on various datasets show that the proposed model is highly effective and generalizable for real-world clinical 

data symptom text classification. 

Keywords: multi-label text classification, traditional chinese medicine symptom text, bert, masked language 

model 

INTRODUCTION 

Medical text categorization is a key application of Natural Language Processing (NLP), particularly for classifying 

symptoms in clinical records, such as those from traditional Chinese medicine (TCM) doctors treating anorectal 

diseases. Symptom Text Classification (STC) aims to automatically categorize patient symptom descriptions into 

predefined categories, helping doctors quickly access relevant information. Traditional classification methods, 

which assign a single label to each text, are insufficient as patient descriptions often involve multiple, interrelated 

symptoms. For example, anorectal disease records may describe symptoms like itching, pain, and constipation 

simultaneously. To address this, the paper frames symptom text classification as a multi-label problem, where 

each text can be assigned multiple labels. This task involves identifying symptom categories based on patient 

descriptions, test results, and other clinical data, using natural language processing algorithms. Additionally, while 

medical entity classification detects and categorizes medical-related phrases, symptom text classification focuses 

on classifying text at the sentence level. Therefore, this paper proposes the Multi-Label Symptom Text 

Classification (MSTC) task. 

The objective of MSTC is to extract features from symptom texts and assign them to appropriate symptom 

categories. Unlike single-label models, MSTC allows a symptom text to be assigned multiple labels. However, 

challenges such as class imbalance, complex label dependencies, and ambiguity in symptom descriptions, 

particularly in Chinese texts, make this task difficult. Recent improvements in deep learning and Transformer 

models like BERT have significantly advanced multi-label classification, benefiting clinical research, disease 

retrieval, and herbal recommendations. In practice, clinical texts are often lengthy and complex, with noise or 

redundancy obscuring their meaning. Additionally, labels may share subsets of text, creating linguistic 

correlations that need to be captured. MSTC research focuses on three key areas: effectively capturing semantic 

patterns, extracting relevant information for each label, and identifying label correlations. Significant progress has 

already been made in these areas with deep learning techniques. 
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A standard strategy in multi-label symptom text classification is to treat it as a series of binary classification 

problems [1].  Methods like CNNs [2] and attention mechanisms [3] also fail to capture these relationships. A 

label co-occurrence matrix can address this by representing label dependencies, providing valuable insights for 

datasets with clear co-occurrence patterns [4]. Traditional medical text classification relies on manual feature 

engineering and machine learning, which struggle with complex texts. Recent deep learning advancements have 

enabled automatic categorization of symptom texts, improving accuracy in clinical applications. Some methods 

capture label relationships via label structures, while others treat MSTC as a label generation model [5], or learn 

label representations [6-7] and model label associations in training data for better predictions [8-9]. However, 

challenges remain when labels are minimal or absent, and modeling relationships in a complex label space is still 

difficult. 

With the arrival of large-scale pre-trained language models like ELMo [10], BERT [11], and XLNet [12] has 

greatly advanced text classification and various NLP tasks. BERT, in particular, captures rich linguistic features 

in its intermediate layers [13], enabling efficient knowledge transfer in NLP. Recent studies show that designing 

effective prompts for pre-trained models can further enhance their performance [14]. Drawing on the cloze 

question (CQ) method, this paper introduces the Label Masking Multi-Label Symptom Text Classification model 

(LM-MSTC), which uncovers latent semantic and associative relationships between labels [15-16]. The model 

assigns distinct tokens to symptom nouns and creates token prefix templates, which are combined with sentences 

and input into BERT for classification. During prediction, the model predicts all masked symptom nouns. This 

approach leverages BERT's ability to capture semantic relationships between symptom nouns and text. To better 

adapt BERT to medical text structures, this paper proposes a multi-task framework that masks specific label tokens 

and leverages the Masked Language Model (MLM) to predict them, improving the model's capacity to learn label 

associations. Our contributions are as follows: 

(1) Introducing the LM-MSTC model to uncover latent relationships between symptom nouns and texts, jointly 

trained with an MLM task for better performance on real-world clinical data. 

(2) Using a KAN linear layer to classify high-dimensional contextual features and a CorNet module to capture 

label correlations, improving prediction accuracy.  

(3) Experimental results on different datasets demonstrate the effectiveness of this model in real-world clinical 

symptom text classification tasks, as well as its strong generalization ability. 

RELATED WORK 

Multi-Label Text Classification 

Multi-label Text Classification (MTC) is a core task in Natural Language Processing (NLP). In recent years, a 

variety of deep learning methods have been used in research on multi-label classification algorithms, including 

CNN [2], RNN [17], R-CNN [18], and attention mechanisms. These methods are capable of extracting contextual 

features from texts. Furthermore, attention mechanisms are frequently employed to extract important features 

from the text that are associated with the labels. Pre-trained models, such as BERT, have significantly improved 

the performance of multi-label classification tasks. However, these methods mainly focus on extracting text 

representations and treat labels as a whole sequence for prediction, without considering the differing contributions 

of text content and overlooking the correlations between labels. Certain methods approach this by converting 

multi-label text classification into individual or binary classification problems [1]. The Binary Relevance (BR) 

method, for instance, considers each label as a distinct binary classification problem, disregarding label 

dependencies. Other methods leverage pairwise label relationships, such as Pairwise Comparison (RPC), which 

converts multi-label learning into a label ranking problem through binary preference classification [19]. However, 

when a label is related to several other labels, utilizing higher-order label dependencies often yields better results. 

The Classifier Chains (CC) method converts the MTC task into a series of binary classification problems [20], 

explicitly modeling label correlations by introducing label order. K-labelsets (RAkEL) forms small random label 

subsets, reinterpreting the MTC task as single-label classification on each subset [21]. Although this method is 

simple to implement, scalable, and flexible, it still fails to fully leverage label dependencies. 
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Apart from text modeling, another common method in MTC involves calculating the similarity between feature 

representations of text and labels through learning label embeddings for classification [22-23]. This type of 

method is called label-aware methods. It is based on the concept that multi-label documents are treated as mixtures 

of various label embeddings, with related labels often appearing together in the same or related documents. LW-

PT [7] is a powerful label-sensitive approach that trains a label encoder by performing positive and negative 

document sampling for each label. LSAN [24] is a label-sensitive approach that employs a label attention network, 

integrating both text and label data, while using an attention mechanism to assess the contribution of each word 

to the labels. To enhance label semantics, Vu et al. [22] developed a method that incorporates external information 

from Wikipedia to enhance label embeddings. 

Correlations might exist between labels in the MTC task [25]. To capture more abstract label relationships in 

multi-label classification, some models utilize statistical correlations [26]. However, statistical models often 

encounter difficulties due to incomplete and noisy label pair co-occurrence patterns in the training data [27]. With 

the recent advancements in deep learning, some research has utilized sequence learning models to solve the MTC 

problem, including Sequence Generation Models (SGM) [28]. These models produce a candidate label set using 

an RNN decoder. However, models based on sequences require finding the best solution in the latent space, and 

with many labels, the computation becomes time-consuming. 

In summary, existing multi-label classification methods focus more on local features and do not fully utilize global 

information. 

Multi-Label Symptom Text Classification (MSTC) 

MSTC is designed to automatically categorize the symptom texts provided by patients into predefined symptom 

categories, thereby helping doctors quickly and accurately obtain relevant information. However, in traditional 

Chinese medicine (TCM) corpora, there are many rare and specialized terms, making it challenging for traditional 

models to comprehend the actual semantics of TCM vocabulary. Additionally, the information available in TCM 

texts is often limited, and traditional methods struggle to make accurate symptom predictions based on the limited 

textual data. Compared to single-label classification, the challenge of MSTC lies in the potential correlations or 

dependencies between labels (for example, "itching" and "constipation" often occur together). The model needs 

to predict multiple labels simultaneously, rather than just a single label. 

Some keywords in real-world TCM symptom texts often play a decisive role in the classification results. For 

example, the sentence "20 years ago, without any obvious cause, I experienced lower abdominal bloating, 

difficulty defecating, dry stools, and blood streaks in the stool" would be categorized into both constipation and 

hematochezia. Clearly, terms like "difficulty defecating" are more strongly correlated with constipation than with 

hematochezia, while "blood streaks" is closely related to hematochezia. To tackle this, Xiao et al. [24] introduced 

the Label-specific Attention Network (LSAN), a model that integrates both document content and label text, using 

a self-attention mechanism to assess each word's contribution to the corresponding label. While it achieved good 

results, it overlooked the correlation between labels. Nam et al. [29], Yang et al. [5], and Qin et al. [30] used 

Seq2Seq-based methods to establish label correlations and employed attention mechanisms to extract 

discriminative features from the text. However, traditional single-head attention mechanisms only consider a 

single layer of semantic information between words and fail to capture comprehensive contextual information. P. 

Ankit et al. [9] proposed MAGNET, It employs feature and correlation matrices to capture and analyze the key 

dependencies between labels. However, due to its s strong reliance on building the label correlation matrix, if the 

correlation matrix between labels cannot effectively capture the correct dependencies, the model may fail to 

achieve the expected performance. 

In this paper, the high-dimensional features from the BERT model are fed into the KAN linear layer. The KAN 

linear layer, with its learnable activation function, can adaptively adjust during training to accommodate different 

labels and input patterns. Additionally, the CorNet module is introduced after the original label prediction to 

effectively mine the correlations between labels and accelerate the model’s convergence. This model can more 

comprehensively and deeply consider the semantic relationships between text information and labels, thereby 

improving the classification performance for these labels and further enhancing the prediction accuracy. 
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METHOD 

Based on related research, this paper proposes a MTC model based on label masking, with the overall architecture 

of the model illustrated in Figure 1. 

The model mainly includes two aspects: first, predicting the distribution of multiple labels within the label set; 

second, predicting the masked label content through the MLM task. Through this multi-task training approach, 

the model effectively captures the complex interdependencies among labels and significantly enhances both the 

accuracy and generalization ability of multi-label classification. 

First, a template is constructed using label masking (Label Mask, LM), where the positions of the masked labels 

are marked as MASK, and these templates are incorporated as part of the input sequence and passed to the BERT 

model. BERT extracts high-dimensional contextual information from the input text, and then the KAN linear layer 

classifies these features. The KAN linear layer can flexibly adjust the activation function, allowing it to better fit 

the data and improve classification accuracy. Then, the CorNet module further enhances the correlation between 

labels, ensuring that label prediction not only depends on individual features but also considers the mutual 

influence between labels. Finally, the MLM task is incorporated during training, allowing the model to predict the 

probability distribution of labels as well as the masked labels according to their positions in the input sequence. 

This strengthens the model’s training process and further enhances its generalization ability. 

 

Figure 1. Overall architecture of the model 

KAN 

KAN (Kolmogorov-Arnold Networks) is an innovative neural network architecture, as shown in Figure 2(b). 

Unlike MLP, KAN does not use linear combination operations; instead, it applies non-linear transformations to 

each pair of basis elements individually and then combines them into a multi-dimensional space. As shown in 

Equation (1). 

𝑓(𝐱) = 𝑓(𝑥1,⋯ , 𝑥𝑛) = ∑  2𝑛+1
𝑞=1 Φ𝑞(∑  𝑛

𝑝=1 𝜙𝑞,𝑝(𝑥𝑝))                                   (1) 

Where, ∑  𝑛
𝑝=1 𝜙𝑞,𝑝 represents the summation of internal functions, 𝜙𝑞,𝑝 denotes the internal function, which is a 

learnable unary function and represents the activation function on an edge of the network, known as the spline 

function. ∑  2𝑛+1
𝑞=1 Φ𝑞  represents the summation of external functions, which are also learnable, and Φ𝑞  is the 

external function that combines the outputs of the internal functions to generate the final output. 
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The high-dimensional features obtained from the BERT model are passed into the KAN linear layer, which 

contains rich contextual information and potential relationships among the labels. In text classification tasks, 

labels often exhibit complex interdependencies, and there may also be issues such as label imbalance or short 

descriptions for certain labels. Traditional fully connected layers are often limited in handling these issues because 

they struggle to flexibly adjust activation functions to better fit these complex patterns, leading to insufficient 

learning for certain labels and an inability to effectively capture key features. The KAN linear layer, through 

learnable activation functions, can adaptively adjust during training to accommodate different labels and input 

patterns, thereby improving the classification performance for these labels and further enhancing prediction 

accuracy. 

  

(a) MLP (b) KAN 

Figure 2. MLP and KAN network architecture diagram 

Cornet Module 

The structure of the CorNet [31] module is shown in Figure 3, and the function expressions are given in Equations 

(2) and (3). Here, x represents the original label prediction, y represents the enhanced label prediction, F(x) denotes 

the output of CorNet, W denotes the weight matrix, and b stands for the bias term, δ and σ stand for the Sigmoid 

function and the Exponential Linear Unit (ELU), respectively. 

𝑦 = 𝐹(𝑥) + 𝑥                                                                (2) 

𝐹(𝑥) = 𝑊2𝛿(𝑊1𝜎(𝑥) + 𝑏1) + 𝑏2                                              (3) 

 

Figure 3. CorNet network structure 

Traditional deep learning methods typically map features to the label space through fully connected layers, but 

they overlook the relationships between labels. By introducing CorNet after the original label prediction, this 

model effectively captures the correlations between labels and accelerates the convergence process. This is 

particularly important in multi-label classification tasks, where label dependencies are often strong. CorNet 

provides a flexible way to model these dependencies, further improving prediction accuracy. Additionally, 

increasing the number of CorNet layers can alleviate the vanishing gradient problem to some extent, allowing the 
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network to be effectively trained at deeper layers, thus improving the model's performance and stability in 

handling complex tasks. 

Label Mask 

In MTC tasks, documents typically have varying numbers of true labels, making it impractical to construct specific 

templates for each label. Therefore, a template system has been established to handle the entire label space. In this 

system, each label position has three possible states: 0, 1, and MASK, representing different label statuses. 

Additionally, by introducing position-based prompts, the BERT model is able to clearly identify the position of 

each label. These prompts are used as prefixes for the label sequence and are passed into the BERT model along 

with the original text during training. After the template is generated, the label sequence is presented in a specific 

format, where LS represents the label's starting position and LE signifies its ending position. For example, for a 

label sequence containing [0, 1, MASK], the generated template would clearly mark the status of each label: [LS 

− 1] [NO − 1] [LE − 1], [LS − 2] [YES − 2] [LE − 2], [LS − 3] [MASK − 3] [LE − 3]. 

The model's objectives during training include two aspects: first, predicting the probability distribution over 

different labels within the label space; second, predicting the masked content through the MLM task. After the 

BERT output is processed by a fully connected layer, the label distribution predictions and masked predictions 

are obtained. This approach allows the model to capture label correlations effectively, while improving both the 

accuracy and generalization of multi-label classification. This paper employs Binary Cross-Entropy (BCE) as the 

loss function for MTC and uses Cross-Entropy for the MLM task. The BCE loss function is shown in Equation 

(4), and Equation (5) shows the Cross-Entropy loss function. 

ℒ𝑚𝑡𝑐 =
1

|𝐿|
∑  
|𝐿|
𝑖=1 (𝑦𝑡𝑖𝑙𝑜𝑔(𝜎(𝑦𝑝𝑖)) + &(1 − 𝑦𝑡𝑖)𝑙𝑜𝑔(1 − 𝜎(𝑦𝑝𝑖))                        (4) 

𝐿𝑚𝑙𝑚 = −∑  𝑉
𝑖=1 𝑦𝑖log⁡(𝑝𝑖⁡)                                                (5) 

Here, σ denotes the sigmoid activation function, yt and yi denotes the true labels, and yp and pi denote the 

predicted results. Equation (6) presents the final joint loss function. 

ℒ𝑀𝑆𝑇𝐶 = ℒ𝑚𝑡𝑐 + 𝜆ℒ𝑚𝑙𝑚                                                 (6) 

EXPERIMENTS AND RESULTS ANALYSIS 

Data Preparation and Preprocessing 

The study gathered clinical records from the Department of Colorectal Diseases at Xi'an City Traditional Chinese 

Medicine Hospital, spanning from March 2021 to March 2024. From these records, 6,575 symptom descriptions 

were extracted. Preprocessing of the Chinese medical treatment records included the elimination of stop words, 

the application of the BERT model to identify and remove highly similar texts, and the adjustment of text lengths 

to ensure uniformity, with an average text length not exceeding 300 words. This process resulted in 5,947 valid 

symptom descriptions, which were compiled into the dataset named XHTCM. Based on the "Colorectal Diseases 

Outpatient Electronic Medical Record Template" provided by Xi'an City Traditional Chinese Medicine Hospital, 

the valid symptom descriptions were categorized into 16 classes: constipation, hematochezia, diarrhea, abdominal 

distension, abdominal pain, swelling and pain, pain, prolapse, pruritus, abnormal discharge, hyperplasia, erosion, 

eczema, swelling, a sensation of heaviness, and a feeling of incomplete evacuation. 

Dataset 

The experiments used the real-world data set of Xi'an Traditional Chinese Medicine Hospital (XHTCM) and 

Reuters-21578 obtained by desensitization. The dataset's basic information is provided in Table 1. 

Table 1. Dataset Statistical Information 

Dataset Total samples Train Val Test Number of labels 

Reuters-21578 10789 5827 1943 3019 90 

XHTCM 5947 4757 595 595 16 
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Evaluation Index 

In this paper, Hamming Loss and micro-F1 Score are the main evaluation metrics, with Accuracy and Micro-

Jaccard used for further assessment. The calculation of Hamming Loss is given in Equation (7), where a smaller 

Hamming loss value is better. 

𝐻𝐿 =
1

|𝐷|
∑  𝐷
𝑖=1

𝑥𝑜𝑟(𝑥𝑖,𝑦𝑖)

|𝐿|
                                                    (7) 

Where xor is the operation, xi and yi represent the real and predicted values, |D| donates the total count of samples 

in the dataset, and |L| donates the total count of labels. 

The accuracy is calculated as shown in Equation (8), where higher accuracy values are better. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑  
|Γ|
𝑖

Ξ(𝑌𝑡𝑖,𝑌𝑝𝑖)

|Γ|
                                                (8) 

Here, |Γ|is the size of the test set, andΞ(⋅) is the indicator function. If all elements in Yti and Ypi match at each 

position, thenΞ(Yti,Ypi)=1, otherwise, Ξ(Yti,Ypi)=0. 

Baseline Models 

CNN [32]: A CNN-based model is employed for feature extraction from text and to produce a probability 

distribution across different labels. 

CNN-RNN [28]: A combination of CNN and RNN is employed to extract text features and generate the label 

distribution within the label space. 

SGM [5]: The Multi-label Classification Task (MCT) is treated as a sequence generation problem in SGM, where 

a novel decoder-based sequence generation model is implemented to address the task effectively. 

MEGNET [9]: A model leveraging the Graph Attention Network (GAT) framework, which can capture 

dependencies between labels and model label dependencies using a graph structure and attention mechanism. 

LW-LSTM+PT [7], LW-LSTM+FT: Document representations are acquired with label-aware details utilizing 

pre-trained (PT) models, which are then fine-tuned (FT) to cater to various downstream tasks. PT refers to the 

initial pre-training phase, while FT signifies the subsequent fine-tuning process for targeted downstream 

applications. 

BERT [11]: A pre-trained language model, that can be adapted and fine-tuned to enhance performance across a 

variety of downstream tasks. 

Experiment 

Experimental environment and hyperparameter settings 

The particular aspects of the experimental hyperparameters are presented in Table 2, which represent the optimal 

parameters selected after multiple experiments. 

Table 2. Experimental hyperparameter configurations 

Hyperparameters Values 
Learning Rate 5e-5 

Batch Size 16 
Epochs 40 

Warm-up Epochs Ratio 0.1 
Mask Probability of MLM 0.15 

Optimizer AdamW 

 

Ablation experiment 

Ablation experiments were conducted on the Reuters-21578 and Xi'an Traditional Chinese Medicine Hospital 

datasets to assess the effectiveness of the improvements in the LM-MSTC model. The results are shown in Tables 

3 and 4. 
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Table 3. Ablation experiment results (Reuters-21578) 

Bert LM MLM KAN CorNet Accuracy (+, %) Micro-F1(+, %) Micro-Jaccard (+, %) HL (-) 

√     84.71 88.62 80.3 0.0031 

√ √    84.12 89.1 80.83 0.0029 

√  √   84.95 89.04 80.72 0.00295 

√ √ √   84.9 89.2 81.13 0.0027 

√ √ √ √  85.13 89.45 81.24 0.0028 

√ √ √ √ √ 85.51 89.61 81.65 0.0028 

 

Table 4. Ablation experiment results (XHTCM) 

Bert LM MLM KAN CorNet Accuracy (+, %) Micro-F1 (+, %) Micro-Jaccard (+, %) HL (-) 

√     86.88 96.1 93.35 0.0141 

√ √    86.56 96.56 93.82 0.014 

√  √   87.1 96.4 93.73 0.0145 

√ √ √   87.39 96.89 93.92 0.0116 

√ √ √ √  87.52 96.85 93.95 0.0122 

√ √ √ √ √ 87.75 97.03 93.94 0.0113 

 

From the ablation experiment results, it can be seen that in the Reuters-21578 dataset, the model with the 

integrated methods, except for the slightly higher Hamming loss compared to the method without the KAN and 

CorNet modules, outperforms the other methods in all other metrics. In the Xi'an Hospital of Traditional Chinese 

Medicine dataset, the integrated models show significant improvements across all metrics, thereby validating the 

performance of each model component. 

Comparative experiment 

To validate the effectiveness of the proposed model, we compare it with models such as CNN, CNN-RNN, SGM, 

MEGNET, LW-LSTM+PT, LW-LSTM+FT, and BERT on the Reuters-21578 and Xi’an Traditional Chinese 

Medicine Hospital datasets. The comparison results are shown in Table 5. 

Table 5. Experimental results comparison 

Model 

Reuters-21578 XHTCM 

Accuracy 

(+,%) 

F1 

(+,%) 

Jaccard 

(+,%) 
HL (-) 

Accuracy 

(+,%) 

F1 

(+,%) 

Jaccard 

(+,%) 
HL (-) 

CNN 80.5 85.3 77.9 0.0287 81.08 93.9 92.1 0.0192 

CNN-RNN 80.6 84.5 77.36 0.0282 80.25 93.51 91.89 0.0201 

SGM 83.24 87.1 78.82 0.0277 84.2 94.62 92.35 0.0188 

MEGNET 85.32 89.51 81.42 0.0265 87.43 96.75 93.76 0.0163 

LW-LSTM+PT 83.41 87.21 78.86 0.0271 84.13 94.52 92.65 0.0185 

LW-LSTM+FT 83.46 87.34 78.91 0.0273 85.56 94.83 93.14 0.0151 

BERT 84.71 88.62 80.3 0.0031 86.88 96.1 93.35 0.0141 

LM-MSTC 85.51 89.61 81.65 0.0028 87.75 97.03 93.94 0.0113 

 

From the table, the model proposed in this paper outperforms others on all metrics—accuracy, F1 score, Jaccard, 

and Hamming loss—on the Reuters-21578 dataset. Compared to the traditional CNN model, accuracy increased 

by 5.01%, F1 score improved by 4.31%, and Jaccard rose by 3.75%, and Hamming loss decreased by 90.2%. 

Compared to the baseline BERT model, accuracy improved by 0.8%, F1 score increased by 0.99%, Jaccard rose 

by 1.35%, and Hamming loss decreased by 9.7%, and Hamming loss decreased by 9.7%. The model also 

performed excellently on the Xi’an Traditional Chinese Medicine Hospital dataset, where compared to the 

baseline BERT model, accuracy increased by 0.87 percentage points, F1 score increased by 0.93%, Jaccard 

improved by 0.59%, and Hamming loss decreased by 19.9%. These experiments show that the proposed model 

exhibits good generalization ability and delivers outstanding performance in traditional Chinese medicine text 

classification. 
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It can be observed that models like CNN, CNN-RNN, LW-LSTM+PT, LW-LSTM+FT, etc., performed poorly 

on both datasets, showing a large gap in classification accuracy compared to BERT and other models. The large-

scale pre-trained BERT language model, compared to traditional static language models, not only achieves 

dynamic word vector representations but also provides higher semantic accuracy for the word vectors. 

Furthermore, the Xi’an Traditional Chinese Medicine Hospital dataset contains many specialized Chinese 

medicine terms. Language models that have not been pre-trained on large-scale corpora face difficulties in 

understanding Chinese medicine texts, resulting in inaccurate semantic representations of the texts and thus 

leading to incorrect predictions by the model. 

Additionally, machine learning-based algorithms like SGM also performed poorly. This indicates that for more 

complex tasks, machine learning methods struggle to extract accurate text semantics based on statistical rules. 

The field of traditional Chinese medicine has its own unique specialized knowledge and rules, which are difficult 

for conventional machine learning models to interpret and grasp. The LM-MSTC, utilizing large-scale pre-trained 

language models, achieved superior prediction results, highlighting the crucial role of pre-training in multi-label 

text classification for traditional Chinese medicine. 

CONCLUSION 

This paper examines the limitations of deep learning in TCM clinical text classification and introduces an 

improved MTC model with label masking, a KAN linear layer, and the CorNet label enhancement module. 

Experimental results on the Xi'an TCM Hospital dataset indicate that the proposed model excels over other 

mainstream models in several metrics. Furthermore, the improved model demonstrates good generalization ability 

on public datasets. However, the proposed model has a large number of hyperparameters, which require extensive 

experimentation and repeated verification, making the process of determining the optimal hyperparameter 

combination complex and time-consuming. Future work will focus on researching and designing an adaptive 

optimization method that enables the model to autonomously choose the optimal hyperparameter combination 

according to data characteristics and task requirements, thus reducing manual intervention and experimental costs 

while improving the model's practicality and deployment efficiency. 
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