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Abstract 

Gravitational waves are distortions in the space-time continuum produced when heavenly bodies interact. 

In 1916,as per relativity theory, Albert Einstein hypothesized the presence of gravitational waves. These 

waves are difficult to detect, yet they contain an abundance of data about the things that generated them. 

LIGO which stands for ”Laser Interferometer Gravitational-Wave Observatory” discovered gravitational 

waves for the first time in 2015, begetting more research and analysis. By analysing the gravitational 

waves released by the earlier objects in the universe, cosmologists can gain insight into the conditions 

of the universe that prevailed after the Big Bang. These Waves can also be used to study how matter is 

distributed in Universe and to discover new objects such as dark matter, exoplanets and black holes. The 

existence of glitches, which are noise transients, affects the processing of GW data. If some glitches 

excite the detector at the same frequency as gravitational waves, they may impede analysis. In order to 

recover segments of gravitational wave signals that coincide with a glitch, it is necessary to correctly 

interpret glitches. Classification of these glitches is also very important as it tells the origin of the 

glitches and hence help in their removal from the gravitational wave. The recent developments in the 

disciplines of Data Science and Artificial Intelligence have unveiled new and robust detection and 

analytical tools. This work includes a survey report on the identification and classification of glitches 

by different researchers, as well as critical insights and analyses on the topic.This work at its first part 

explores the dataset - Gravity Spy where we have identifies few issues which may be unknowingly have 

not been identified in any of the work we have studied for this paper.On the other side, it is demonstrated 

with illustrations, that methodologies studied thus far may fail when applied to glitches belonging to 

new classes and new unknown glitch images. 

Keywords: Gravitational Waves, Neural Networks, Glitches, Deep Learning, Gravity-Spy, LIGO, 

VIRGO. 

1. Introduction 

Machine learning and its various applications have been studied in various areas. These days everywhere artificial 

intelligence, machine learning and its models, and data analysis are buzzwords. Day by day its applications are 

increasing. Astronomy is also one such area where machine learning has proved how much complicated data will be 

there , machine learning with data science can create its magic. Multiple researches have been conducted in 

astronomical area using machine learning like exoplanets identification , identifying the possibilities of harboring life 

on different cosmological objects like moon, planets or exoplanets, star- galaxy separation, galaxy classification and 

identification, supernovae classifications and many more. Gravi- tational wave analysis and study of its parameters is 

also one such area. This paper explores on a phenomena found in gravitational waves called as Glitches which basically 
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hinders the study of these waves.Glitches are some sort wave having same frequency and somewhat similar 

characteristics as that of gravitational waves. 

Also, glitches are of several types. Some of these types have been explored and many are unknown. Hence, 

identification that whether glitch is present or not in gravitational wave is a problem and another is which type of 

glitch is present because, if glitch type is not known we may pass it as a gravitational wave and hence it will create 

problem in the study of gravitational waves. As of now from Gravity Spy dataset (discussed in detail in further 

section ),according to which 22 types of glitches are known. However, there can be many more. 

This paper’s primary objective is to present the study of Gravity Spy dataset mostly used for studying various 

glitches and compare the various machine learning algorithms utilised to date for glitch categorisation. The paper also 

presents a comparative analysis between these approaches and shows that models explored so far, what they are 

claiming worked well with previous data but as the dataset is continuously increasing model’s performances are 

going down. Reason for this may be that each time a gravitational wave is encountered there might be some unknown 

types of glitches that are present and models are unable to identify them and classify them. Hence, this motivated to 

present this survey. 

1.1. Gravitational Waves 

Special theory of relativity proposed by Einstein, transformed physics by demonstrating that time and space are 

not two independent entities, but rather a single entity known as ”space-time.”The concept of dynamical space-time 

is now firmly rooted in contemporary physics. One of the important characteristics of dynamical space-time is its 

radiative nature, or ”gravitational radiation” — which will usher in whole new approaches for viewing various 

astrophysical phenomena. Einstein gave space-time curvature and rendered it dynamic (Albert Einstein, 1922). The 

resulting theory of gravity is covariant, (AlbertEinstein, 1915) meaning that its physical measurements predictions 

hold true regardless of the axes used to measure them. Gravity must be causal for it to be consistent with special 

relativity: Any alteration to a gravitational origin must be conveyed to viewers at the maximum speed of light, c. 

This suggests the existence of ”gravitational radiation.” By integrating a time-dependent Newtonian potential with 

special relativity, as proved by (Abbottet.al., 2016), it is possible to compute with astonishing accuracy a number of 

the features of gravitational radiation. 

When a binary mechanical system emits gravitational waves, the energy loss rate is defined by quadrapole formula 

that Einstein discovered. Einstein’s quadrupole formula: 

4πr2e4
r = 

16 
T 2ω6 (1) 

5 

T denotes the tensor with respect toquadrupole moment, whose components are components with respect to moment 

of inertia of the system, 4πr2e4
r is the energy loss rate due to gravitational waves, and e4

r (along the radius) is the 

energy component of the gravitational field. A binary system comprises two distant entities. They have plane-based 

and elliptical orbits. By producing radiation, there is an increase in the orbital angular frequency, loss in the energy 

of the binary system and the distance between the entities decreases. (Weinstein , 2016) 
In (Eddington,Stanley , 1922), the author again derived the quadrupole formula proposed by Einstein in 

1918 and obtained the following result: 

4πr2e4
r =  

32 
T 2ω6 (2) 

5 

 
(Acernese et.al., 2014) observing a discrepancy between his formulas and Einstein’s, he attributed it to a 

mathematical error in one of the investigations. Einstein included the factor 1/2 inadvertently due to a slight 

calculation error in his 1918 research (Eddington,Stanley , 1922). 

The quadrupole formula indicates that it is difficult to generate GWs due to the requirement of massive masses 

travelling at relativistic speeds. This is a result of the weak gravitational interaction. Astrophysical objects are the 

only ones big and relativistic enough to generate detectable GWs. 

These gravitational waves have been detected almost a centuryafter they were predicted by Einstein. This discovery 

was made by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)(Aasi et.al., 2015) and the 

Advanced Virgo detectors (Acernese et.al., 2014). The first GWs from a BBH, GW150914 
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were discovered by the advanced detectors during their first observing session (O1) for the period September 12, 2015 

till January 19, 2016. (Abbott,Benjamin, 2016). The first direct discovery of GWs from a binary neutron star (BNS), 

GW170817, was made by the advanced detectors during their second observation session (O2)(Abott et.al., 2017). Ten 

BBHs and one BNS event were reported by the LIGO-VIRGO Collaboration (LVC) before the end of session 2 and 

were both listed in the first Gravitational-Wave Transient Catalog, GWTC-1 (Roule, 2021). A total of 50 events 

were included in the second Gravitational-Wave Transient Catalog (GWTC-2)(Abbott R et.al. , 2021), which adds 

39 GW events from the first part of the third observing run (O3a). 

The Advanced LIGO (Aasi et.al., 2015) and Advanced Virgo (Acernese et.al., 2014) instruments are kilometer- 

scale laser interferometers. The Virgo detector is situated close to Pisa in Italy, whereas the two LIGO detectors 

are situated in Hanford, Washington, and Livingston, Louisiana in the United States. Since 2015, when the upgraded 

generation of interferometers commenced operating, observing periods and commissioning periods have alternated. 
When gravitational waves pass through laser interferometers, they are detected as strains. These strains 

are given as 

s(t) = 
∆ 

δL 
(3) 

 

, where δL represents the strain change. To better comprehend the source, length is frequently translated into 

numerical relativity-based waveform. (Agrawal et.al., 2020) 

1.2. Physical Properties Of Gravitational Waves 

(Agrawal et.al., 2020)Gravitational waves induce the compression and extension of space matter, as well as the 

slowing and quickening of time around an object. GW possesses polarisation identical to those of light, which are (i) 

+(plus) and (ii) x(cross) types, respectively. This polarisation is a result of the binary inspiral pair’s precession. 

Gravitational Waves propagates as waves in space-time at the light’s speed . Propagation of these waves will takes 

place iff(Agrawal et.al., 2020) 

wavelength << R (4) 

where R represents space-time’s Radius of Curvature (ROC) . Some other wave characteristics like dispersion, 

absorption etc are not of significance in gravitational waves. 

1.3. Applications of Gravitational Waves 

1.3.1. Black holes merger 

Black holes have mighty gravitational pull such that even light also cannot escape them. These black holes are 

the leftovers of enormous stars. Humans cannot see black holes directly. Scientists have spent years observing the 

environment to determine the black hole’s existence. According to an article cited in Horizon Magazine, gravitational 

waves permit direct detection of black holes without the requirement for an ”intermediate” space-time messenger. 

The first detection of GW by LIGO in 2015, was due to the collision of two different black holes. This collision 

resulted in ripples in space-time. 

1.3.2. Neutron star merger 

According to an article by Nola Taylor Redd on Neutron stars, these stars made of neutrons are extremely dense and 

spin very quickly when a big star bursts in a supernova. Rapid fusion results from the spiral motion of two neutron stars 

creating gravitational vibrations. According to a LIGO Caltech post, the neutron star merger was spotted for the 

second time on April 25, 2019. The LIGO observatory then discovered gravitational waves generated by the 

”GW190425” neutron star merger. 
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1.3.3. Gamma-ray burst 

Gamma-ray burst (GRB), a burst of extremely bright light created by the demise of the most powerful star in the 

universe, may emit light for several months. Seeing GRBs with a telescope does not provide exhaustive information. 

Gravitational waves are strongly related to the dynamic mobility of an object’s mass and its energy, according to an 

LIGO Scientific Collaboration article. It can detect GRBs differently than light. On 17 August 2017, NASA’s Fermi 

Gamma-ray Space Telescope discovered a brief Gamma-ray Burst (GRB): GRB170817A which was due to an 

explosion which produced a light pulse of high energy. 

1.3.4. Core-Collapse Supernova Explosion 

This explosion happens when a massive star dies and this results in production of gravitational waves. (Hensley 

, 2019). Direct observations with an optical telescope are incapable of entering a star’s core, because light emitted from 

a star’s core cannot infiltrate its surrounding materials. Hence, information regarding the cause of the explosion is 

lacking. Gravitational waves hence gives a way of learning about dynamics of collapsing of core. 

Errors from both instruments and environment introduces noise transients, which are called as glitches and this 

hampers the analysis of GW data. These malfunctions can be triggered by a variety of factors, including earthquakes 

[(Schwartz et.al., 2020), (Figura et.al., 2022)], lightning strikes [(Valdes G et.al. , 2020), (Washimi et.al. , 2021)], 

and human activity in the area [(Nguyen et.al., 2021), (Acernese et.al. , 2022)]. Instrumental problems with the 

detectors themselves may potentially lead to malfunctions [(Accadia T et. al. , 2021)]. If some of these glitches hit 

detector with the same frequency as binary coalescences, they may interfere with bias analysis [(Pankow et al , 2018), 

(Powell,, 2018), (Macas Ronaldas et.al., 2022), (Payne Ethan et.al., 2022), (Davis, D et.al., 2022)]. Not only must 

we be able to discriminate between genuine gravitational-wave occurrences and glitches, but we must also 

comprehend glitches well enough to recover bits of the gravitational-wave signal that may overlap with the glitch. 

In the publication titled ”Machine learning for Gravity Spy: Glitch categorization and dataset,” (Bahaa- dini et.al., 

2018) the Gravity Spy dataset was made publicly available. This collection has 8583 images of LIGO faults and the 

parameters for 22 error classes. For the conventional test set, the optimal classifier, deep neural network models’ 

ensemble plus an SVM model, obtained an accuracy of 98.21%. However, the glitch classifications observed in LIGO 

data will change over time. 

1.4. Introduction of Existing Machine Learning Techniques Used in Glitch Classification 

This section provides an overview of the machine-learning techniques that various scholars have used to date (to 

the best of our understanding and exploration) to classify gravitational wave glitches. The later section of this paper 

discusses and shows the results of applying these techniques. Also, the analysis of these results has been done in later 

section of this paper. Machine Learning techniques used so far are discussed as: 

1.4.1. Logistic Regression 

Logistic Regression is a machine learning classifier that estimates the probability of occurrence of event based on 

the given dataset with independent variables. Logistic Regression can be used to classify two classes whereas 

multinomial logistic regression is used for more than two classes. 

Logistic regression solves the problem by learning the patterns from a training set using parameters a weight vector and 

a bias. 
𝑛 
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏 (5) 

Equation 5 represents the hypothesis function and sigmoid function (Equation 6) is applied to the hypothesis function 

which outputs the value between 0 and 1 representing the probabilities. The discrete class ”0” or ”1” that corresponds 

to this probability value is subsequently assigned. We choose a threshold value to transfer this probability value to a 

discrete class. The decision boundary refers to this value as the threshold. Within 

y = ∑ 
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Figure 1: Sigmoid function maps the real values to the range of (0,1) 

 

this threshold value, values will be mapped to class 0, and beyond this threshold value, values will be mapped 

to class 

1. σ(y) = 
1 

(6) 
1 + e 

For example, if we set decision boundary as 0.6 , then probabilities which are greater than equal to 0.6 can be kept in 

class ”1” category else in class ”0”. However, it makes certain assumptions that must be satisfied like the observations 

must not depend on one another in order for it to work. It also requires that there should not be any multicollinearity 

present within the variables.The log odds and linearity of independent variables are presupposed in the logistic 

regression model. It also needs a huge amount of data to provide good accuracy. 

1.4.2. Support Vector Machines 

Support Vector Machine comes under supervised machine learning category which is primarily used for 

classification tasks. A decision-making boundary called hyperplane is used to segregate the n-dimensional space into 

n-classes.SVM looks for a hyperplane that best distinguishes between two information categories. The information 

input is viewed as a set of vectors, and the vectors supported are the data points that specify the grading limit. The 

algorithm creates a decision that is defined by support vectors. In order to guarantee linear (the ”kernel trick”) and 

non-linear connections within the information, the input features 
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Figure 2: An example of a 2-dimensional space-separable problem. The support vectors, denoted with grey squares, 

define the separation between the two classes. 

are transformed to a greater dimension using the kernel. Linear choice limits are then established in this area. The 

kernel is a mathematical function that is applied so that the non-linear data points observed in the data set can be 

transformed into the linear data points such that they can be separated to a large extent. [(Cortes, 1995)]. A hyperplane 

which is termed an ”optimal hyperplane” is a linear decision function with the maximal margin between the vectors 

of the two classes ((Cortes, 1995)). To create the ideal hyperplanes, a small number of data points referred to as 

Support Vectors from the training set are considered. These points remain close to the hyperplane and influence its 

position and orientation. SVM can be used for face detection, text recognition, etc. Two hyperparameters are there 

in the algorithm— the kernel size and classification error cost— help prevent overfitting. Another variable that can 

be changed is the kernel form, with the Radial Gaussian base matrix being a common choice. The primary 

characteristic of radial basis functions is that they exhibit monotonically escalating and descending trends as one 

moves away from the centre. The centre, distance scale, and radial function shape are the three primary model 

parameters. The multivariate functions are approximated by these functions using a linear combination of univariate 

functions. The mathematical illustration that demonstrates how RBF impacts a set of hypotheses, H(x), for any 

dataset DS(x, y), where data set has N number of points, is shown below. 

(7) 
𝑛 

𝐻(𝑥) = ∑ 𝑤𝑖 𝑒𝑥𝑝(−𝛼|| (𝑥 − 𝑥𝑖 )2||) 
𝑖=1 

Thus, each datapoint in the dataset has an impact on the observation’s Gaussian form (bell shaped curve). Impact 

will be zero if datapoint x → ∞. There are various types of radial functions, including multiquadratic and thin-plate 

splines etc. 

1.4.3. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) is a whole new set of neural architecture known for Image, speech or audio 

signal inputs introduced in the year 1980 ((Fukushima, 1980)). CNNs proved to have better performance in dealing 

with image data which is used mainly for feature extractions and reducing the 
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Figure 3: ( Courtesy ((Fukushima, 1980))MPCNN architecture using alternating convolutional 

and max-pooling layers 

 

 

dimension of images. Model has 3 primary layers : Convolutional, Pooling and Fully-connected (FC) layer. CNN 

increases in its complexity which is used to extract the important patterns in the image. The initial layers of CNN 

focus on simpler features like edges, colours, etc whereas the deeper layers focus on complex features like size, 

shapes, etc. Figure 3 represents the CNN architecture for the classification of 6 classes. The convolution layer is the 

core component of CNN architecture where most of the computation happens. It needs very less components, mainly 

input data, a filter, and a feature map. Filter or Kernel detects the feature. It is a two-dimensional weighted array that 

scans all the receptive pixels of the image, and judge if the feature is present in that receptive pixels or not. This is 

called as convolution. 

Pooling Layer is next to the convolutional layer to de-sample the outputs of convolutional layers by sliding the filter 

of n x n size with some stride size and calculating the maximum(MaxPooling) or average(Average Pooling) of the 

input. 

1.4.4. Transfer Learning 

CNNs undoubtedly able to extract the features from the image data but take much time to learn features with 

complex architectures. A new learning method called Transfer Learning focuses on applying the knowledge to other 

related problems without re-training the model from scratch. This method proven to learn the features in 

comparatively less time than traditional CNNs which are built from scratch. This is a popular deep learning 

approach used as an inceptive point for computer vision and deep learning problems. Inductive Transfer is the form 

of transfer learning used in deep learning. Transfer learning models use pre-trained models. These pre-trained models 

saves time for making models to train or learn as these are trained on some other but similar task. 

Transfer learning can be further divided intohomogeneous andheterogeneous transfer learning based on the disparity 

between areas ((Weiss et.al., 2016)). For cases where feature space is almost same, homogeneous learning approaches 

are created and put forth. When the fields have different feature spaces, the knowledge transfer process is called as 

heterogeneous transfer learning ((Zhuang et al , 2020)). 

Two general approaches for transfer learning are Develop Model and Pre-trained model approach. In first approach, 

following four steps are followed: Choosing the source task, developing the source model, reusing the model and fine 

tuning it. Whereas in the Pre-trained model, three steps need to follow: Selecting the pre- 
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Figure 4: (CourtesyHe Kaiming et.al., 2016) Inductive Transfer Illustration from 

Transfer Learning 

 

trained model which is released by many research institutions, Reusing the model and Tuning the model. Some of 

the pre-trained models are ResNet ((He Kaiming et.al., 2016)), VGG((Simonyan and Andrew, 2014)), InceptionNet 

((Szegedy et.al., 2015)), etc. 

1.4.5. Ensemble Learning 

Ensemble Learning is a machine learning technique that is used to improve accuracy by combining various machine 

learning algorithms. This algorithm allows machines to learn various features compared to a single model. Ensemble 

learning is of three types: Boosting, Stacking and Bagging. 

Bagging in general is an ensemble learning technique that seeks out a diverse collection of basic models called as 

ensemble candidates by changing the training data. By combining different model types that are fitted to the training 

data and combining predictions using a model, the ensemble technique is known as stacking that targets a diverse 

group of members. In order to highlight situations when previously fit models on the training dataset exhibit 

mismatch, an ensemble technique called ”boosting” seeks to change the training data. 

 

2. Data Source 

Gravitational wave signal GW151226 due to the coalescing of two stellar-mass black hole binary sys- tems was 

detected by Advanced LIGO detectors on 14th September 2015 (Abbott,Benjamin, 2016). The Gravitational-wave 

data generally comprises transient noise along with the actual signal wave. Time- frequency spectrograms are 

generally used to visualize the data along with this transient noise (Bahaadini et.al., 2018). Time-frequency 

morphology is a type of signal processing technique used to analyze non- stationary signals. It involves the analysis 

of the frequency content of a signal over time, which can be used to identify patterns, trends, and other characteristics 

that may not be visible when the signal is considered as a whole. Time-frequency morphology can also be used to 

extract information from non-stationary signals, such as speech or audio signals. In the Gravity Spy dataset, the images 

are a type of spectrograms which are obtained from the process called Q-transforms which transforms data series to 

the frequency domain. The standard dataset meets quality standards, while the Gravity Spy dataset has Q- 

transformed images for the transients detected by the detector’s gravitational-wave channels that are louder than a 

particular thresh- old, specifically the signal-to-noise ratio (SNR) (Abbott et. al., 2016). The Gravity Spy dataset 

consists of 22 different morphological glitch classes which were selected (the larger LIGO Scientific Collaboration 

had already identified the names and morphology of several of these classes and hand selected tens to hundred of these 

example images (often with input from algorithms, such as the Hierarchical Veto (Smith et.al, 2011) that categorise 

glitches according to how they relate to other forms of disturbances, such as seismic noise). 
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These categories are also the classification options (buttons) that users of the Gravity Spy project interface must 

select. 

Gravity Spy consists of 7,966 spectrogram images of 22 different classes categorised into the train, test and validation 

directories. 

Works carried out by ((Yan et.al., 2022) ), used the Gravity Spy dataset which consists of 7,996 spec- trogram 

images of 22 classes categorized into training, testing and validation directories. The results of numerous studies 

and analyses of the works conducted with Gravity Spy are discussed in detail in the subse- quent sections. However, 

the recent release of Gravity Spy has 31,868 images and several unexplored classes. The existing models must continue 

to be tested on the new dataset to determine whether they are still applicable to the new dataset with the same 

accuracy. 

 

Directory Number of Images 

Validation 1,200 

Test 1,179 

Train 5,587 

The below represented 22 classes are listed in the gravity spy dataset. Due to the change in weather and geographic 

conditions at the LIGO detector, classes are neither exhaustive nor static. There are many pos- sible sub classes of 

glitches, and sometimes there are new or short-lived classes of glitches (Bahaadini et.al., 2018). These 22 classes are 

an attempt to delineate the most representative and distinguishable classes during LIGO’s first and second observing 

runs from September 2015 to December 2015 (O1) and November 2016 to August 2017 (O2), respectively, 

(Bahaadini et.al., 2018). 

 

Glitch Type Number of Images 

1080Lines 328 

1400Ripples 81 

Air Compressor 58 

Blip 1,821 

Chirp 60 

Extremely Loud 447 

Helix 279 

Koi Fish 706 

Light Modulation 512 

Low Frequency Burst 621 

Low Frequency Lines 447 

No Glitch 150 

None of the Above 81 

Paired Doves 27 

Power Line 449 

Repeating Blips 263 

Scattered Light 443 

Scratchy 337 

Tomte 103 

Violin Mode 412 

Wandering Line 42 

Whistle 299 
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Figure 5: Omega Scan images for example members of each class within the Gravity Spy dataset. From top 

left to bottom right; row one: 1080 Lines, 1400Ripples, Air Compressor, Blip, row two: Chirp, Extremely 

Loud, Helix, Koi Fish, row three: Light Modulation, Low Frequency Burst, Low Frequency Lines, No Glitch, 

row four: Paired Doves, Power Line, Repeating Blips, Scattered Light, row five: Scratchy, Tomte, Violin 

Mode, Wandering Line; row six: Whistle, None of the Above (one possible example, this class can have 

various forms) (Coutesy:Bahaadini et.al., 2018) 
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Class Total Train 

Set 

Valid Set Test Set Duration Frequency Evolving 

1080Lines 328 230 49 49 Long High No 

1400Ripples 232 162 35 35 Short High No 

Air Com- 

pressor 

58 41 8 9 Short Low No 

Blip 1869 1308 281 280 Short Mid Yes 

Chirp 66 46 10 10 Short Mid, Low Yes 

Extremely 

Loud 

454 318 68 68 Long High, 

Mid, Low 

Yes 

Helix 279 195 42 42 Short Mid, Low Yes 

Koi Fish 830 581 125 124 Short Mid, Low Yes 

Light 

Modula- 

tion 

573 401 86 86 Long Mid, Low Yes 

Low 

Frequency 

Burst 

657 460 99 98 Short Low Yes 

Low 

Frequency 

Lines 

453 317 68 68 Long Low No 

No Glitch 181 127 27 27 Long - No 

None of 

the Above 

88 62 13 13 Short High, 

Mid,Low 

Yes 

Paired 

Doves 

27 19 4 4 Short Mid,Low Yes 

Power 

Line 

453 317 68 68 Short Low No 

Repeating 

Blips 

285 200 69 42 Short Mid No 
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Scattered 

Light 

459 321 69 69 Long Low Yes 

Scratchy 354 248 53 53 Long High, Mid Yes 

Tomte 116 81 17 18 Short Low Yes 

Violin 

Mode 

472 330 71 71 Short High No 

Wandering 

Line 

44 31 6 7 Long High Yes 

Whistle 305 213 46 46 Short High Yes 

 

Among all classes, there is a class labelled as “None of the Above” which signifies that all 81 spectrogram images 

in this class does not fit into any other glitch class and remain unclassified. All 150 images of the “No Glitch” class 

signify no glitch is detected at the LIGO detector.(Bahaadini et.al., 2018) Each Image in the gravity spy dataset is 

570 x 470 pixels 

 

There was a noteworthy observation that we have made in Gravity Spy dataset. The trends we have observed 

Bahaadini et.al. that may have an impact on model’s precision. The literature that we have explored for this research 

have no where mentioned about these observations. There are 137 spectrogram images in the dataset which are 

categorised as glitches despite not having any glitch data i.e. we observed empty spectrogram here as shown below 

in Fig:6 an illustration from the dataset. In this particular spectrogram as can be seen the glitch falls under the 

category Whistle , where there is no glitch in actual. The literature studied so far on Gravity Spy dataset as per 

best of our knowledge have nowhere 
 

 

Figure 6: Empty Spectogram Image classified as Whistle from Livingstone observatory in O1 

run 

 

 

mentioned about empty spectrograms being given as a glitch class. It should have been categorised in dataset 
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however as NoGlitch class but has been categorised into another glitch category. Another important observation 

which we have made on this dataset was that the glitches classified under same cate- gory have different 

spectrograms. Although they belong to the same class, the glitch images are radically distinct in appearance. Despite 

coming from the same class, the glitches from Livingston and Hanford observatories look distinct. As can be 

observed from Fig:7 Glitch (from Hanford) categorised as Whistle has different spectrogram as compared to 

spectrogram obtained from Livingston. Again the literature work explored have nowhere any mentions about these 

issues with respect to the dataset. For further study , identification and classification of glitches a careful 

investigation of the dataset is required. 
 

 

Figure 7: Spectogram Images from Whistle class looking different from Hanford and Livingston O1 

runs 

 
Class Total 

number of 

Images 

Train 

Set 

Valid 

Set 

Test 

Set 

Total 

Num- ber 

of Empty 

Images 

Empty 

Images in 

Train Set 

Empty 

Images in 

Valid Set 

Empty 

Images in 

Test Set 

Blip 1869 1308 281 280 2 2 0 0 

Extremely 

Loud 

454 318 68 10 111 78 16 17 

Koi Fish 830 581 125 124 2 2 0 0 

Low Fre- 

quency 

Burst 

453 317 68 68 2 2 0 0 

No 

Glitch 

181 127 27 27 9 7 1 1 

None of 

the 

Above 

88 62 13 13 2 2 0 0 

Paired 

Doves 

27 19 4 4 8 5 1 2 

Whistle 305 213 46 46 1 1 0 0 

 

3. Related Work 

Several works are being carried out by many computer scientists to detect the glitches in gravitational waves. 

Among these, one of the notable works is carried out in (Bahaadini et.al., 2018). In this paper, the authors analysed 

the accuracy of different machine learning algorithms. The linear Support Vector Machine (SVM) Machine Learning 

Algorithm is implemented using the sci-kit-learn library with 0.1 as the value of Capacity constant (C). 
With N data points in training set x N and training labels y ∈ {1, −1}, the optimization problem solved 

by SVM is - 

i  i=1 
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𝑡 

 
 
 

𝑚𝑖𝑛 1 ||𝑣2|| + 𝐶 ∑𝑛  𝜂 (8) 
𝑤,𝑏 2 𝑖=1  𝑖 

 

 
subject to yi(v

T xi + b) ≥(1 - ηi) and ηi ≥ 0, for i = 1..n 

b and v indicates the parameters of hyperplane (here, v is a coefficients’ vector and b is a constant), C is the 

capacity constant, and also it is a slack variable that deals with interlinked inputs thus enabling approximated 

solutions if feasible solution doesn’t exist. Grid search and n-fold cross-validation are used to perform the 

hyperparameter’s fine tuning (Bahaadini et.al., 2018). By fitting the training and testing data to the Linear SVM 

model an accuracy of 96.19 % was achieved where value of C was considered as 0.1. 

Another algorithm, Kernel Support Vector Machine (SVM) Learning Algorithm was used with a combination of Radial 

Basis Function (RBF) as the kernel in order to capture non-linearity patterns that exists in Gravity Spy data. The kernel 

trick is used so that samples can be linearly separated by projecting them intoa different feature space.[(Amari Shun-ichi 

et.al., 1999), (JC et.al. , 1998), (Watt et.al., 2020)]. The RBF kernel function is as follows (as given in previous section 

part of equation 7, multiplied with weights) 

K(xi.xj)=  exp(−α||(xi−xj||2 ) (9) 

The optimal values of hyperparameters of the RBF classifier are C = 5.65 and α = 4e−5 were determined with the 

help of grid-search technique along with n-fold cross-validation which resulted in 97.12% accuracy. Another approach 

used by authors was Deep Convolutional Neural Networks (DeepCNNs). It had max pooling and convolutional 

layers, after which fully connected and softmax layers were implemented using Keras and Theano libraries in Python. 

A CNN model with an input image size of 280 x 340, convolutional layers with a regularization parameter to r = 

2(1e − 4) for L2 regularization and ‘glorot uniform’ as an initialiser. The Adamax has used an optimiser with the 

default parameters of Keras2 and other parameters. Its batch size was selected as 30 whereas epochs were specified 

as 200. This Deep CNN model resulted in achieving an accuracy of 97.67 %. 

 

 

Figure 8: The merged-view model’s architecture was optimised for this Gravity Spy dataset.(Bahaadini 

et.al., 2018) 

 

Another optimal approach, the Ensemble Machine Learning Algorithm framework is used to get the power of 

various classifiers in a single model. Soft Fusion is a type of the ensemble model used to classify gravitational wave 

glitches which are stacking with the probabilistic distribution of basic classifiers and the resulting feature vectors 

were merged to give a single input feature vector to the final classifier. In soft fusion, Linear SVM has been used as 

an ultimate meta classifier which takes feature vectors of various basic classifiers as input. By this method, the model 

achieved 98.06 % accuracy. Hard Fusion is another type of ensemble framework used to classify gravitational 

glitches which do not train the new classifier but perform the weighted summation of outputs of all basic classifiers. 
 

 
𝑝𝑡 = 𝑤1 𝑝𝑚𝑣 

𝑡 + 𝑤2 𝑝𝑚𝑣 
𝑡 + 𝑤3𝑝𝑚𝑣 

 
𝑡 + (1 − (𝑤1 + 𝑤2 + 

(10) 

ℎ𝑎𝑟𝑑 1 2 3 

𝑤3))𝑝𝑠𝑣𝑚 
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The ultimate Ensemble algorithm of hard fusion was able to achieve the accuracy of 98.21 %, which was best among 

methods used. Another work was carried out using Logistic Regression with elastic net regularisation to identify 

glitches in LIGO data using only auxiliary channel data. This system achieved around 83.18 % accuracy (Colgan, 

2020). Various ML and Deep Learning models can be used to enhance accuracy. 

 

 

Figure 9: (Courtesy Colgan, 2020)The Ensemble model’s architecture fine tuned for Gravity 

Spy’s another version. 

 

Another work carried out in (Colgan, 2020) in the year 2017, used the concept of transfer learning for the 

classification and also used unsupervised clustering for grouping together anomalies and new types glitches (Colgan, 

2020). Gravity Spy is chosen as the data source for the work. Various transfer learning architectures are like ResNet, 

InceptionNet, and VGG. In analysing the work carried out by other researchers, the model tends to reach accuracies 

around 97 % but it is not applicable for all classes to be classified at the same level of accuracy. Utilizing state-of- 

the-art CNNs that have already been trained for object identification, the Deep Transfer Learning technique for glitch 

classification is used to solve this issue. Authors retrained the algorithm with a small dataset of spectrograms from 

LIGO and it accurately classified the glitches (Colgan, 2020). With 8 out of 22 classes, this methodology gets a 

perfect precision-recall rate of 98.8%. Inception models V2 and V3 both got the accuracy over 98% in less than 10 

iterations while training whereas VGG models(16 and 19) achieved accuracy above 98% in less than 30 iterations 

while training.(Colgan, 2020). Trained CNN models could have been used as good feature extractors in order 

to extract the features and find the new categories of glitches using unsupervised and semi-supervised techniques. 

For any of the CNN models, eliminating the softmax and fully-connected dense layer close to the output gives a 

CNN model that converts whatever input image to a vector of real numbers that encodes useful information for 

classifying various types of glitches.(Colgan, 2020). Hence, whenever some unknown type of glitches appears, 

which is classified as None of the Above by the CNN model, it can be transformed to vectors using these truncated 

CNN feature extractors and novel classes or clusters can be found. This work claims the model can be used for the 

new time-series data of Gravity Spy as well as KARGA (Eiichi et.al., 2014)and LIGO-India(Unnikrishnan,, 

2013)data. 

Another work carried out in (Yan et.al., 2022) used the concept of Progressive Generative Adversarial Networks 

(ProGANs) for Image augmentation and transfer learning for classification. Table 1 shows that the spectrogram 

image distribution is not uniform with all classes. A class labelled ‘Blip’ contains 1821 images which is 22.86 % of 

the whole dataset whereas a class labelled ‘Paired Doves’ contains 27 images which are 0.34 % of the whole dataset. 

Due to the nature of spectrogram classification, traditional image augmentation techniques are inapplicable for small 

sample sizes. To address this, the authors propose a variant of Generative Adversarial Networks (GANs) called 
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Progressive GANs, which can produce very good resolution spectrograms which are almost similar to the quality of the 

original images and also gives desirable diversity. To begin, authors used the ProGAN framework, which was based 

on TensorFlow, in order to produce fake images for classes using a smaller training dataset. The original 566 x 466 

pixel image was downscaled to a more manageable 512 x 512 using ProGAN. Minibatch sizes tend to get smaller as 

resolution increases beyond 32 × 32. The generator’s learning rates can be changed on the fly. The generator 

had a learning rate of 1.5 ∗ 10 − 3 if the resolution reaches 256x256. After ProGAN was fully trained, the generator 

had a learning rate of 3 ∗ 10 − 3. Spectrograms for 20 of the 21 classes (not including None of the Above) may be 

obtained using the same method and the same parameters for ProGAN. After comparing their generated images to 

real-world examples of Gravity Spy, the authors claimed that ProGAN’s generated images get back the training data 

distribution properly, and simultaneously also increased the diversity of spectrograms, which is very imortant for 

achieving less overfits and better generalisation (Yan et.al., 2022). The dataset with a generated set of images is 

inputted into Deep Convolutional Transfer Learning Networks which are trained by PyTorch on the ImageNet dataset. 

The output layer contains 21 nodes which represent 21 classes of glitches excluding None of the above. This work 

uses transfer learning architectures like ResNet50, ResNet101 and InceptionNet-V3 to build the classification models. 

299 x 299 taken as input dimension for IncpetionNet-V3 and 244 x 244 image resolution images are taken as input for 

ResNet50 and ResNet101 architectures. To prevent the model from overfitting or losing the best weights, early 

stopping methods are used with L2-regularisation. On comparing the metrics of the three models, 99.35 % accuracy is 

achieved on the test dataset of the ResNet101 model outperforming all models on the test data set whereas the 

accuracy of 98.43 % is achieved using InceptionNet-V3 which outperforms all models on the training dataset. 

It is indicated in the report that the resolution of the original photos has been scaled, however, the data loss is not 

identified. Similarly, they have not compared the accuracy of various algorithms with respect to models on fake 

images(GAN-generated images) in this work. There is no evaluation of the model’s performance on these fake 

images. Similarly, there is no study of the model’s performance if unidentified glitches emerge. In addition, the 

model fails to recognise whether a new glitch (outside of the 22 classes) is discovered. This paves the way for more 

research opportunities involving the detection of glitches of new types or glitches that are subtypes of the 22 classes. 

The work carried out in (Glanzer et.al., 2022), classified 379805 glitches from LIGO Livingston and 233981 

glitches from LIGO Hanford into semantic classes (Glanzer et.al., 2022). This work also focuses on finding out the 

glitch distribution and its comparison at two sites LIGO Hanford and LIGO Livingston. 

The work carried out in (Coughlin et.al., 2019) used the concept of transfer learning to classify the glitches in 

gravitational waves. Despite the fact that classification of glitches using machine learning techniques has showed 

promise, these techniques have a number of limitations. First, supervised machine learning methods, in which a training 

set of already identified classes of transients is provided to the algorithm, have no quick way to identify further classes 

present in the data. Unsupervised ML techniques have the drawback they separates the know-how of relationship of 

classes with the detector from its analysis. Furthermore, as there is overlapping among the clusters and the algorithm 

learns the attributes from unlabeled data that is not sufficiently discriminatory, unsupervised techniques are hampered 

by the need that it should only confirm the classes which it has identified. None of the techniques whether it is 

supervised or unsupervised is ideal though they have their own advantages. The inclusion of None of the above class 

while classifying is not an effective method for extracting features and classifying with new data. The spectrograms 

of the recognised Gravity Spy classes are comparable to and different from the unlabeled Gravity Spy glitches due to 

transfer learning, which tends to provide a better fit in clustering and aids in the discovery of new glitches. A model 

is developed to find the similarities and dissimilarities of known images of Gravity Spy. For this analysis, DIRECT 

(Bahaadini et.al., 2018), a transfer learning model is used to find the similarity between the images of the gravity spy. 

To determine the optimal configuration (setting and training) for DIRECT, two activation functions were tried, tanh 

and leakyReLU, for fully connected layer which DIRECT extends to the VGG16 model. Moreover,authors tuned the 

count of training rounds along with the number of pairs having similar and different images randomly selected every 

time from the training data. Author compared DIRECT to other simpler approaches with raw pixel data for 

determining similar images (Bahaadini et.al., 2018) and they concluded that DIRECT results are better or comparable 

based on the glitch. 

 

4. Comparative Analysis 

The authors of the research (Colgan, 2020) employed Logistic Regression with elastic net regularisation and 

attained an accuracy of 83.18 percent using this method. This methodology has the advantage of 
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Figure 10: (Colgan, 2020) Graphical representation of the ProGAN generator and discriminator. The first layer of 

ProGAN’s network design provides low-resolution (4 x 4) images, and the second layer adds support for higher- 

resolution (4 x 4 to 8 x 8) output. It’s a recursive process. Growth of the generator and discriminators is always 

in lockstep with one another. 

identifying potentially glitchy LIGO data segments using only auxiliary channel information. However, machine 

learning and deep learning methods can be utilised to optimise the model. 

The authors of the research (Bahaadini et.al., 2018) employed the Hard Fusion method. Hard Fusion is a type of 
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ensemble framework used to classify gravitational glitches that executes the weighted sum of the outputs of the basic 

classifiers rather than training a new classifier. This work has an accuracy rate of 98.06%. This method has the 

advantage of precisely identifying the 22 bug classes. But it is unreliable in predicting and identifying new data on 

glitches. 

In the publication (Shen et.al, 2018), unsupervised and semi-supervised Transfer Learning methods were employed. 

This was able to attain 98.8% overall accuracy and flawless precision-recall in eight out of twenty- two classes. This 

research states that the model is applicable to the new Gravity Spy time-series data as well as KARGA (Eiichi et.al., 

2014) and LIGO-India (Unnikrishnan,, 2013)data. Yet, only eight of the twenty-two classes attain precision recall. 

In the paper (Yan et.al., 2022) ProGAN with transfer learning approach was utilised achieving an accuracy of 

99.35%. After comparing the manufactured images to the initial Gravity Spy images, the authors concluded that the 

generated images not only recover the training set distribution very well, but it also increased the diversity among 

spectrograms, which is crucial for reducing overfits and to have better generalisation (Yan et.al., 2022). It is claimed 

in the report that the resolution of the original pictures has been scaled down, however the amount of data loss is not 

disclosed. Furthermore, they have not examined the accuracy of various algorithms relative to models using fake 

images (GAN-generated images) in this study. Similarly, there is no examination of the performance of the model 

if unforeseen glitches occur. 

4.1. Re-generation of DeepCNN Architecture for Analysing Its Performance On Updated Dataset 

We re-generated the same DeepCNN architecture used in (Bahaadini et.al., 2018) and applied it on the updated 

Gravity Spy Dataset. We discovered that the model is inconsistent in predicting and classifying the glitches. The 

accuracy has dropped from 97.69 % (the original dataset in (Bahaadini et.al., 2018)) to 88.77%. It can be seen in 

figure 9 that deep CNN is efficient in learning the new dataset and hence almost 

 

 

Figure 11: Training Vs Validation Accuracy using Deep Neural Networks on 31,868 images 
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ideal training accuracy but failed in validation phase. The work was just done on a model to show that already 

existing models worked well on earlier dataset but when exposed to new data they may not perform very well because 

of multiple unknown classes of glitches. 

5. Future Scope and Conclusion 

The gravity spy data can be further analysed further using other sophisticated approaches to break it down into 

various classes. Due to missing uniformity in sampling size ProGANs are used (Yan et.al., 2022) but it doesn’t 

guarantee the closeness of the generated image to the real one. Usage of semi-supervised or self-supervised 

techniques to be used to categorise the None of the Above class of gravity spy which results in finding out more 

glitches. This model is not only restricted to the present data but can also be applied to new time-series data. 

Accuracies of varying degrees can be attained through resampling the dataset. More sophisticated data augmentation 

techniques can be implemented to keep track of the rate of loss. Identification of glitches paves the path to more 

research opportunities in the field of Astro Physics. As still many glitch classes are unknown, a model is required 

which can further provide a generalization and can learn that it is a glitch of some unknown type. GANs have further 

subvariant which can be explored and can provide a further way towards improvement for glitch classification. Other 

techniques or models cab further be developed in this direction. It is also required as investigated in this work, that 

what will be the impact of study if we remove the empty images from the dataset . Also, the glitch classes identified 

to have different spectrograms as per two observatories, is it giving correct study and in the correct direction or 

somewhere we needto explore which observatoryruns glitches to be considered or we need some other robust algorithms 

which can properly identify these glitches. With these questions we conclude that more proper study of data obtained 

from these observatories is required to be done in order to have proper analysis and classification of glitches. 
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