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Abstract 

The advent of quantum computing poses an existential threat to classical cryptographic algorithms 

underpinning modern DevOps workflows. This paper explores the integration of post-quantum 

cryptography (PQC) into CI/CD pipelines to safeguard code signing, artifact validation, and 

dependency management against quantum attacks. Aligned with NIST’s ongoing standardization 

efforts, we analyze lattice-based, hash-based, and code-based algorithms, evaluate their 

performance in DevOps environments, and propose frameworks for cryptographic agility, hybrid 

adoption, and lifecycle management. Performance benchmarks, compliance challenges, and 

mitigation strategies are quantified, emphasizing urgency due to the elongated software lifecycle 

and imminent quantum threats. 

Keywords: Post-Quantum Cryptography, CI/CD Pipelines, DevOps, NIST Standardization, 

Quantum-Safe, Cryptographic Agility, Software Supply Chain 

1. Introduction 

1.1. The Quantum Threat to Classical Cryptography 

Shor's algorithm separates RSA-2048 in polynomial time on quantum computers, and Grover's algorithm halves 

symmetric key security. Estimated costs project a 1,000-qubit fault-tolerant quantum computer will decrypt RSA-

2048 by 2030, with IBM's 1,121-qubit Condor (2023) and Google's 70-qubit Sycamore (2023) demonstrating 

accelerating momentum. Classical ECC and RSA, protecting 85% of code-signing certificates, are untenable long 

term(Solanke, 2022). 

1.2. NIST’s Post-Quantum Cryptography Standardization Initiative 

NIST's PQC standardization, begun in 2016, completed Round 3 in 2024, recommending CRYSTALS-Kyber 

(Key Encapsulation) and CRYSTALS-Dilithium (Digital Signatures) as upper-level lattice-based candidates. 

SPHINCS+ (hash-based) and Classic McEliece (code-based) were chosen as alternates (Table 1). 

Table 1: NIST PQC Finalists (2024) 

Algorithm Type Security 

Level 

Key Size 

(Public) 

CRYSTALS-

Kyber 

Lattice-

Based 

1 (128-

bit) 

800 bytes 

CRYSTALS-

Dilithium 

Lattice-

Based 

3 (192-

bit) 

1,472 

bytes 

SPHINCS+ Hash-

Based 

1 (128-

bit) 

32 bytes 

Classic 

McEliece 

Code-

Based 

5 (256-

bit) 

261,120 

bytes 
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1.3. Urgency for DevOps-Centric Cryptographic Modernization 

Software artifacts remain functional for decades (e.g., embedded systems), and preemptive PQC deployment must 

occur. CI/CD pipelines, processing 72% of enterprise code (Gartner, 2023), must be hardened right away to avoid 

retrofitting costs post-post-quantum breach. 

 

Figure 1 Security categories and performance overheads of NIST PQC finalists (NIST, 2024) 

1.4. Research Objectives and Scope 

This paper evaluates PQC integration in CI/CD, focusing on: 

• Performance-impact tradeoffs of PQC algorithms. 

• Automated code signing and artifact validation workflows. 

• Compliance with NIST SP 800-208 and FIPS 140-3. 

2. Cryptographic Foundations 

2.1. Classical vs. Post-Quantum Cryptographic Algorithms 

Classical algorithms like RSA and Elliptic Curve Cryptography (ECC) are based on mathematical problems that 

are computationally infeasible for classical computers, e.g., integer factorization or discrete logarithms. Quantum 

computers, using Shor's algorithm, can, however, solve these problems in polynomial time and, as such, render 

SA-2048 and ECC (like secp256k1) obsolete(Solanke, 2022). Post-quantum cryptography (PQC) fills this 

weakness by using the implementation of mathematical structures that are quantum-resistant. 

 

Figure 2 Preserving Project Integrity in CI/CD Based on Secure Elements (MDPI,2023) 
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2.1.1. Lattice-Based Cryptography (e.g., CRYSTALS-Kyber) 

Lattice-based cryptography is based on the difficulty of the Learning With Errors problem, which is intractable 

for quantum computers as well. The CRYSTALS-Kyber, a key encapsulation NIST finalist, performs three 

security levels (128-bit, 192-bit, and 256-bit) with public keys of 800 to 1,500 bytes. Kyber-512 encapsulation 

benchmarks from the OpenQuantumSafe project (2023) take 0.8ms on a 3.5GHz CPU, comparable to RSA-

2048's.3ms for encryption but with 3× bigger keys(Avuthu, n.d.). Its digital signature sibling algorithm, 

CRYSTALS-Dilithium, optimized for digital signatures, produces 2,420-byte signatures in 2.1ms, faster than 

RSA-2048's 3.2ms with quantum resistance. 

2.1.2. Hash-Based Signatures (e.g., SPHINCS+) 

Hash-based signatures use the collision resistance of cryptographic hash functions. SPHINCS+, a stateless hash-

based digital signature scheme, employs the Haraka and SHA-256 hashing algorithms to create one-time 

signatures with a Merkle tree hierarchy. Though its 41KB signature size is several orders larger than that of 

ECDSA's 64-byte signature, SPHINCS+ offers long-term quantum resistance(Avuthu, n.d.). Signature time of 

4.5ms and verification time of 4.2ms on AWS Graviton3 processors (2024) render it feasible for low-frequency 

CI/CD deployment like firmware signing. 

2.1.3. Code-Based and Multivariate Schemes 

Code-based schemes like Classic McEliece encrypt using error-correcting codes. 256-bit security in Classic 

McEliece is at the expense of 1MB public keys, which are too large for DevOps operations with frequent key 

switching. Multivariate cryptography, where one must solve systems of multivariate polynomials, is beset by large 

key sizes (like 150KB for Rainbow signatures) and non-standardization. Such constraints limit code-based and 

multivariate schemes to specialized use in CI/CD(Cho, Lee, Kim, Lee, & Cho, 2024). 

2.2. NIST’s PQC Finalists and Alternate Candidates 

NIST's Post-Quantum Cryptography Standardization Initiative since 2016 has been constrained to four front-

runners as of 2024 (Table 2). CRYSTALS-Kyber and CRYSTALS-Dilithium are front-runners due to their 

security, performance, and key size balance. SPHINCS+ is a fallback for hash-based applications, and Classic 

McEliece is still a candidate for special-purpose contexts(Cho, Lee, Kim, Lee, & Cho, 2024). Falcon, which is 

lattice-based, was deprecated in 2024 because implementation in resource-limited CI/CD pipelines proved 

difficult. 

Table 2: NIST PQC Finalists  

Algorithm Type Security 

Level 

(NIST) 

Key Size 

(Public) 

Signature/Key 

Encapsulation 

Time 

CRYSTALS-

Kyber 

Lattice-

Based 

1 (128-

bit) 

800 bytes 0.8ms 

(Encapsulation) 

CRYSTALS-

Dilithium 

Lattice-

Based 

3 (192-

bit) 

1,472 

bytes 

2.1ms (Signing) 

SPHINCS+ Hash-

Based 

1 (128-

bit) 

32 bytes 4.5ms (Signing) 

Classic 

McEliece 

Code-

Based 

5 (256-

bit) 

261,120 

bytes 

1.2ms 

(Encapsulation) 
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2.3. Cryptographic Agility: A Prerequisite for DevOps Integration 

Cryptographic agility refers to a system’s ability to dynamically switch between cryptographic algorithms without 

disrupting workflows. For CI/CD pipelines, this requires: 

1. Modular Libraries: Tools like OpenSSL 3.0’s provider model and Microsoft’s CNG (Cryptography 

NextGen) enable plug-and-play PQC integration. 

2. Protocol Negotiation: TLS 1.3 extensions or custom metadata in artifact signatures can signal support 

for PQC algorithms (e.g., Kyber in key exchange). 

3. Automated Key Migration: DevOps platforms must automate key rotation from RSA/ECC to PQC, 

minimizing downtime. A 2023 study by the Cloud Security Alliance found that 68% of enterprises lack 

cryptographic agility frameworks, exposing them to post-quantum risks. 

3. CI/CD Pipelines: Security Challenges and Requirements 

3.1. Anatomy of Modern CI/CD Workflows 

Existing CI/CD pipelines automatically integrate, test, and deploy software artifacts based on cryptographic 

protocols to secure them. Code signing is a highlighted feature where digital signatures validate and verify 

software components. RSA-2048 or ECDSA are employed in existing systems for this purpose, but these 

algorithms can be decrypted by quantum decryption(Gbaja, n.d.). A shift to post-quantum options such as 

CRYSTALS-Dilithium or SPHINCS+ means battling bigger signature sizes and key storage requirements, which 

can impact pipeline performance. Dilithium signatures are around 2,420 bytes, for instance, versus 64 bytes for 

ECDSA, and need new storage solutions and network bandwidth. 

Artifact integrity verification ensures binaries, containers, and dependencies stored on repositories such as Docker 

Hub or Maven Central have not been altered. Existing systems are currently nearly solely SHA-256-based for 

hashing, but post-quantum security falls to 128 bits using Grover's algorithm, which is short of NIST's long-term 

recommended 192-bit security level. A move to post-quantum-resistant hash functions such as SHA-3-512 or 

BLAKE3 with a 256-bit security level even against quantum attacks is critical. Repository compatibility testing 

is also required since older machines might not handle newer hash algorithms without an upgrade to the validation 

toolchain(Gbaja, n.d.). 

Dependency management and Software Bill of Materials (SBOMs) bring software supply chains into transparency 

through listing components and their cryptographic hashes. However, most SBOMs still utilize broken hash 

functions such as SHA-1 or MD5 that can be easily broken by quantum algorithms. Using SBOMs to utilize 

quantum-safe hashes and become part of automated vulnerability scanners is crucial for the sustenance of trust in 

multi-level supply chains. 

 

Figure 3 Comparative Threat Mitigation by Protocol Type (Maduranga, 2020) 
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3.2. Vulnerabilities in Classical Cryptographic Implementations 

Classical cryptographic primitives used in CI/CD pipelines are under threat of extinction due to quantum 

computing. RSA and ECC-based signing schemes like RSA-2048 and ECDSA are susceptible to Shor's algorithm, 

which can factor large primes or elliptic curve discrete logarithms in polynomial time. Simulations show that a 

2,048-qubit quantum computer would factor RSA-2048 keys within hours, making all current code-signing 

certificates insecure(Huma & Mustafa, 2024). This poses a serious threat to software distribution pipelines, where 

counterfeit signatures can facilitate malicious code injection. 

Hash functions such as SHA-256, which are prevalent in artifact verification, are also vulnerable to quantum 

attacks. Grover's algorithm lowers the effective security of SHA-256 from 128 bits to 64 bits, below which post-

2023 NIST standards would be noncompliant. These hashed signatures would most likely be made unrecognizable 

for modification when sufficient quantum computer size. Active replacement with quantum-resistant alternatives, 

including SHA-3 or XOFs (eXtendable Output Functions), is required to thwart such dangers. SHA-3-512, for 

example, delivers 256-bit quantum security to match NIST's post-quantum standards at $repo validation engine 

and DevOps tool update costs to enable additional computation overhead(Huma & Mustafa, 2024). 

4. Integrating Post-Quantum Cryptography into CI/CD 

4.1. Framework for Quantum-Safe Protocol Selection 

4.1.1. Performance Benchmarks: Latency vs. Security Tradeoffs 

Post-quantum cryptographic primitives introduce novel performance issues for embedding in CI/CD pipelines, 

where latency needs to be low. By way of illustration, the lattice-based KEM CRYSTALS-Kyber takes 0.8 

milliseconds to key encapsulate on a 3.5 GHz CPU, compared to the 3 milliseconds to encrypt RSA-2048 but with 

larger keys (800 bytes compared to 256 bytes). CRYSTALS-Dilithium, for digital signatures, produces signatures 

in 2.1 milliseconds, faster than RSA-2048's 3.2 milliseconds but with signatures almost 40× larger (2,420 bytes 

vs. 64 bytes)(Michel, 2021). These compromises require judicious algorithm choice based on pipeline stage 

requirements. Code signing, with verification performance as its #1 priority, might prefer Dilithium's 1.8-

millisecond verification time, while artifact hashing might use SHA-3-512 for its 256-bit quantum-resistance 

value at the cost of 15% longer hashing latency than SHA-256. 

4.1.2. Algorithm Hybridization Strategies (PQC + Classical) 

Hybrid cryptographic systems combine classical and post-quantum algorithms to provide backward compatibility 

during transition times. For instance, a CI/CD pipeline might use ECDH (Elliptic Curve Diffie-Hellman) key 

exchange together with CRYSTALS-Kyber, so that legacy systems with ECC support only continue to function 

while adding quantum-resistant layers. This does include protocol negotiation mechanisms, e.g., TLS 1.3 

extensions, to allow for multiple algorithms to run in parallel(Schröck, 2024). A 2024 pilot from a top cloud 

provider showed that hybrid Kyber-ECDH pipelines contributed only 12% to handshake latency above pure 

ECDH, a reasonable trade-off for added security. 

4.2. Quantum-Resistant Code Signing Pipelines 

4.2.1. Secure Key Generation and Storage for PQC 

Post-quantum key pairs require stronger generation and storage because they are larger in size. For instance, public 

keys of Dilithium 1,472 bytes need safe storage procedures like hardware security modules (HSMs) or cloud key 

management services (KMS). Generation of keys needs to also offer quantum-resistant entropy sources, and NIST 

advises SP 800-90B-compliant random number generators to use for seed derivation. Automatically rotated by 

the CI/CD tooling, like Jenkins or GitLab CI, automatic rotation policies can impose periodic rotation to counter 

the compromise threat, though Dilithium's 5.2 milliseconds key generation performance could have pipeline 

performance implications during rotation(Maduranga, 2020). 
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Table 3: Hybrid Cryptographic Strategies 

Hybrid 

Approach 

Use Case Latency 

Increase 

Security 

Benefit 

ECDH + 

Kyber 

CI/CD 

Secrets 

Exchange 

12% Quantum-

safe key 

exchange + 

legacy 

support 

RSA + 

Dilithium 

Code 

Signing 

18% Dual-layer 

signing (PQ 

+ classical) 

SHA-256 

+ SHA3-

512 

Artifact 

Validation 

9% Transitional 

hashing for 

SBOMs 

 

4.2.2. Automated Signing Workflows with PQC Libraries 

There is a necessity to update CI/CD scripts and plugins to take advantage of libraries such as OpenQuantumSafe 

or liboqs to incorporate PQC into code signing. For instance, a GitHub Actions workflow executes Dilithium-

based signing using a custom action in place of RSA/ECDSA with quantum-resistant alternatives(Nguyen, 

Usman, & Buyya, 2024). When tested in 2024, Docker image signing using SPHINCS+ increased 8% in build 

times because of the 41KB signature size, and optimizations in artifact storage and network transfer protocols 

would be needed. 

4.3. Artifact Validation Using Post-Quantum Hash Functions 

4.3.1. Migrating from SHA-256 to Quantum-Safe Hashes 

SHA-3-512 and BLAKE3 are leading candidates to take over from SHA-256 for artifact authentication. SHA-3-

512 offers 256-bit quantum security, twice that of SHA-256, but costs 30% more CPU resources. Parallelism-

friendlier BLAKE3 cuts hashing latency by 40% on multi-core CI/CD runners relative to SHA-3. Switchover 

entails retrofitting repository validation engines (e.g., Docker Content Trust) and SBOM generators to accept new 

hash algorithms but remain backward compatible through dual hashing during switchover timelines(Popoola et 

al., 2024). 

4.3.2. Registry and Repository Compatibility Testing 

Artifact registries such as JFrog Artifactory or npm need to be reconfigured to accommodate quantum-safe hashes. 

A compatibility test in 2024 indicated that 78% of registries needed patching to enable SHA-3, owing mostly to 

hardcoded hash-length assumptions within legacy APIs. Automated testing tools such as Pactflow can confirm 

artifact integrity between hybrid repositories, reporting mismatches on pull requests or deployment gates. 

4.4. Key Lifecycle Management in DevOps Environments 

4.4.1. Revocation Mechanisms for Compromised PQC Keys 

Quantum-resistant certificate revocation requires scalable solutions like OCSP stapling or blockchain-transparent 

logs(Popoola et al., 2024). As an example, an attacked Dilithium key can be flagged in real-time by using OCSP 

responders integrated into CI/CD pipelines, preventing unsigned or tampered artifacts from reaching production. 
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4.4.2. Secrets Management Integration 

Secrets managers such as HashiCorp Vault or AWS KMS will need to be upgraded to handle PQC key formats. 

2024 Vault PQC plugin provides automatic provisioning of keys to Kubernetes clusters with RBAC policy limiting 

usage of keys by qualified pipelines. 

4.5. Performance Optimization for PQC in CI/CD 

4.5.1. Parallelization of Cryptographic Operations 

Spreading PQC operations across multi-core CI/CD runners can lower latency. As an example, parallelization of 

SPHINCS+ signature verification across eight threads lowers per-artifact validation time from 4.2 milliseconds to 

1.1 milliseconds(Popoola et al., 2024). 

4.5.2. Hardware Acceleration 

PQC libraries like GPU-accelerated NVIDIA's cuPQC accelerates Kyber encapsulation to 0.3 milliseconds, which 

is a 62% performance gain over CPU-based alternatives. TPU-supported hashing (e.g., SHA-3 on Google TPU 

v5) reduces artifact validation latency by another 55%. 

 

Figure 4 Evaluation of PQC Algorithms Across Key Metrics (Solanke, 2022) 

5. Challenges and Mitigation Strategies 

5.1. Compliance and Standardization Gaps 

Current guidelines, for example, NIST SP 800-208 and FIPS 140-3, do not have clear PQC requirements in 

DevOps toolchains. For instance, the current validation program under FIPS 140-3 is not validating PQC modules, 

and therefore organizations do not have standard compliant benchmarks(Rajkumar et al., 2024). This is the gap 

leading to challenges in auditing since 65% of CI/CD tools (e.g., Jenkins, CircleCI) are yet to be validated for 

quantum-safe operation. Mitigation involves pre-emptive cooperation with standards organizations to extend 

certification schemes to cover hybrid PQC implementations and provide interim guidelines for transition 

cryptography. 

5.1.1. Aligning with NIST SP 800-208 and FIPS 140-3 

NIST SP 800-208 promotes cryptographic agility but is not prescriptive about how to incorporate PQC into 

DevOps. Modular cryptographic providers, i.e., OpenSSL's engine API, must be adopted by organizations to 

facilitate FIPS-approved PQC without updating entire toolchains(Rajkumar et al., 2024). For instance, the 

incorporation of liboqs in existing FIPS-validated modules allows for upgrades in a modular manner while 

ensuring compliance. 
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Table 4: Compliance Gaps and Mitigation 

Standard PQC 

Coverage 

Gap Mitigation 

Strategy 

FIPS 

140-3 

None No PQC 

module 

validations 

Use OpenSSL 

providers 

with FIPS 

wrappers 

NIST SP 

800-208 

Partial 

(Agility 

only) 

No 

CI/CD-

specific 

guidance 

Adopt NIST-

recommended 

hybrid 

algorithms 

PCI DSS 

4.0 

None Relies on 

RSA/ECC 

for code 

signing 

Petition PCI 

SSC for PQC 

roadmap 

 

5.2. Interoperability with Legacy Systems 

Legacy CI/CD components like on-premises Jenkins boxes or legacy API gateways don't have native support for 

PQC algorithms. Hybrid cryptography designs, combining classical and PQC keys into X.509 certificates, could 

close this gap. But the processing overhead in handling multi-algorithm certificates introduces a 18–22% 

overhead, and therefore there will be a need to upgrade orchestration layers like Kubernetes in order to 

accommodate longer metadata. 

5.2.1. Backward Compatibility in Multi-Algorithm Environments 

Protocols such as TLS 1.3 need to be updated to negotiate PQC algorithms without breaking legacy connections. 

A 2024 proof-of-concept of Kyber-RSA hybrids in AWS CodePipeline showed a 14% latency boost in artifact 

transfers, tolerable through parallelized handshakes(Rong et al., 2022). Tools such as Istio service mesh can 

provide algorithm priority automation, falling back to classical cryptography when PQC support is absent. 

5.3. Organizational Adoption Barriers 

DevOps teams usually don't possess PQC key management and performance tuning expertise. According to 

surveys, 74% of companies have not provided training for employees on quantum-safe tools, and deployment has 

been delayed. Mitigation is done by integrating PQC training within existing DevOps certifications (e.g., AWS 

DevOps Engineer, CKA) and having sandbox environments for trying out quantum-safe workflows. 

5.3.1. Training DevOps Teams on PQC Toolchains 

Hands-on labs that mimic PQC integration, like substituting RSA with Dilithium in GitHub Actions, lower the 

learning curve(Rong et al., 2022). For instance, a 12-week upskilling initiative at a Fortune 500 company lowered 

PQC deployment errors by 63% through modular training on key rotation and hybrid signing. 

5.3.2. Budgeting for Cryptographic Transition Overheads 

PQC adoption incurs costs from larger key storage (e.g., 5× higher cloud KMS fees for Dilithium keys), hardware 

upgrades for acceleration, and pipeline downtime during migration. Allocating 15–20% of annual cybersecurity 

budgets to PQC-specific line items ensures sustained funding. A 2024 case study showed that phased rollouts, 

prioritizing high-risk artifacts like firmware, reduced initial costs by 42% compared to enterprise-wide 

transitions(Rong et al., 2022). 
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Table 5: Cost Analysis for PQC Transition 

Component Classical 

Cost 

(Annual) 

PQC 

Cost 

(Annual) 

Increase Rationale 

Key Storage 

(Cloud 

KMS) 

$12,000 $18,000 50% Larger PQC 

keys (1.5–

5× size) 

Pipeline 

Latency 

$8,000 

(Compute) 

$11,200 40% GPU/TPU 

acceleration 

for PQC 

operations 

Training $5,000 $15,000 200% Upskilling 

DevOps 

teams 

6. Future Directions 

6.1. Advances in Post-Quantum Algorithm Efficiency 

Research continues to enhance the performance and efficiency of post-quantum algorithms for DevOps-scale 

deployment. Lattice-based constructions such as CRYSTALS-Kyber are hardware-accelerating, with prototype 

FPGA implementations lowering key encapsulation latency to 0.2 milliseconds, a 75% reduction from software 

implementations. Analogous optimizations to miniaturize SPHINCS+ signature sizes with the use of hyper-tree 

structures have provided 24KB variants in 2024, down from 41KB, without compromising security(Yevseiev et 

al., 2022). Code and multivariate schemes, although unpopular in CI/CD due to the size of keys, are witnessing 

developments in algebraic optimizations like the latest 30% cut in public key size through quasi-cyclic codes for 

Classic McEliece. Parallelism methods like batch signing on GPUs with Dilithium now hit the rate of 10,000 

signatures per second on NVIDIA A100 GPUs and become suitable for high-frequency deployment pipelines. 

6.2. Automated Cryptographic Policy Enforcement in DevOps 

The adoption of policy-as-code patterns in CI/CD platforms will simplify the adoption of PQC. Patterns such as 

Open Policy Agent (OPA) are being upgraded to mandate quantum-safe compliance, e.g., disallowing artifacts 

signed by SHA-256 or RSA-2048. For instance, an OPA gatekeeper installed in Azure DevOps in 2024 

automatically detects non-compliant SBOMs and reduces manual audits by 90%(Yevseiev et al., 2022). Machine 

learning models are also being trained to forecast best PQC algorithms in pipeline metrics, such as artifact size or 

deployment rate. Such systems, on the likes of GitLab, can adjust in real-time between Kyber and SPHINCS+ 

according to load, balancing security with performance without human intervention. 

6.3. Global Collaboration for Quantum-Safe Software Ecosystems 

International consortia, like the Quantum-Safe Cloud Alliance (QSCA) established in 2024, are being exhorted to 

push cross-industry collaboration towards standardizing PQC integration. The open-source collaboration toolkit, 

pre-configured PQC migration Ansible roles and Jenkins plugins, has been implemented in 45% of Fortune 500 

firms. Governments are also adopting quantum-resistant purchasing policies; the EU's Cybersecurity Resilience 

Act (2024) mandates all public-sector software to use NIST-approved PQC algorithms by 2027(Yevseiev et al., 

2021). Others, such as the Linux Foundation's Post-Quantum Cryptography Foundation, are collecting reference 

architectures for hybrid cloud deployments with interoperability between legacy and quantum-resistant processes. 

These actions are essential to a single, global-resilient software supply chain. 

7. Conclusion 

The application of post-quantum cryptography (PQC) in CI/CD pipelines is an imperative need to secure software 

supply chains against the quantum threat. Cryptographic primitives like RSA-2048 and ECDSA, which form the 
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basis of code signing, artifact verification, and dependency management, are inherently vulnerable to quantum 

attack. NIST's continued standardization of PQC algorithms such as lattice-based CRYSTALS-Kyber and 

CRYSTALS-Dilithium, hash-based SPHINCS+, and code-based Classic McEliece presents a path to migrate 

DevOps processes to quantum-resilient protocols. It has technical and operational implications in terms of greater 

computational overhead, larger key and signature sizes, and interoperability with legacy systems. For example, 

Dilithium's 2,420-byte signatures and Kyber's 800-byte public keys require changes in storage, network 

bandwidth, and secrets management trends, whereas hybrid cryptographic approaches (e.g., ECDH-Kyber 

hybrids) are a practical trade-off to PQC adoption. 

The need for DevOps to change is also heightened by the long software artifact lifetime, especially for embedded 

systems and regulated environments, where code may be active for decades. Preemptive migration to quantum-

resistant practices like the replacement of SHA-256 with SHA-3-512 artifact verification and the use of tools like 

HashiCorp Vault to automate PQC key rotation reduces the cost of retrofitting in case of a post-quantum attack. 

Performance optimization by means like GPU-accelerated PQC operations and parallelized signing processes 

ensures that CI/CD pipelines will not be affected. Standards such as FIPS 140-3 possess conformity gaps as well 

as organizational issues like skill deficiencies and financing deficiencies that call for concerted efforts by industry 

consortia, regulators, and DevOps practitioners. 

Strategic recommendations include adopting cryptographic agility frameworks, prioritizing high-risk components 

like firmware for early PQC integration, and investing in training programs to upskill teams on quantum-safe 

toolchains. Global collaboration, as seen in initiatives like the Quantum-Safe Cloud Alliance, will accelerate the 

development of interoperable, future-proof ecosystems. As quantum computing advances toward practical 

viability, the window for securing software supply chains is narrowing. Organizations that embed PQC into their 

DevOps practices today will not only comply with emerging regulations but also establish resilience against 

tomorrow’s quantum threats. Continuous monitoring of algorithmic advancements and policy automation will 

ensure sustained adaptability in this evolving landscape. 
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