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Abstract 

The paper explores how competitive, technology-agnostic AI-centered hardware can integrate test-driven 

design (TDD) both within and outside of the system. The method requires writing executable tests before 

implementation, binding oracles that involve the golden model on the boundary with tensors, operators, and 

kernels, and continuously integrating and automating regression testing of the simulation, emulation, and 

prototype targets. Multi-tier stimuli (unit, integration, system) are operationalized, acceptance envelopes 

created around possible numerical correctness (e.g., 0.5 percentage-point top-1 delta vs. FP32 with 

INT8/FP16), and the correctness performance and energy gates are linked. Empirically, it has been found 

that the method can raise pre-tape-out functional coverage to ≥95% (measured at 97.1%), code/toggle 

coverage to ≥90%, and mean time-to-repair by a factor of ~40% (10.1→6.0 days). In representative 

workloads (ResNet-50, MobileNet-V3, Transformer, and streaming ASR), the p99 latency is reduced by 

~11–13%, throughput is increased by ≥10%, and power usage is decreased by ≥12% (inferences/J) with no 

notable differences in accuracy. Fault injection and environmental corners are used to increase reliability, 

and fleet-style telemetry can detect and roll back early issues. Benchmarking is based on MLPerf-style KPIs, 

and both tails and medians are reported. Additionally, regression bisection is automatically performed to 

distinguish between compiler and RTL causes. The findings indicate that hardware-centric TDD offers a 

feasible, supply-side blueprint that reduces the re-spin risk (approximately 15%) and speeds up the time-to-

market, with artifacts that are reproducible across data centre and edge deployments. Artifacts and datasets 

are published to facilitate replication studies. 

 

Keywords; Test-Driven Design (TDD), AI hardware verification & validation, Hardware–software co-

design, Quantization drift (INT8/FP16), MLPerf-style benchmarking. 

 

1. Introduction  

AI performance parameters have grown by millions, then expanded to trillions of parameters, multiplying the need 

for leading-edge compute resources. The cost of training a state-of-the-art transformer can surpass 1e23 floating point 

calculations and run for weeks on its thousands of accelerators. In the meantime, interactive search, vision, and speech 

competitive inference aim for a 95th percentile (p95) latency of less than 10 ms with a controlled 99th percentile (p99). 

The demands conflict with the enduring hardware constraints: limited on-chip memory in the form of SRAM compared to 

working sets; limited off-chip bandwidth, even with multi-accelerator schedules, using HBM3e; and contention at the 

interconnects of multi-accelerator schedules. Frequency and voltage scaling are hindered by constraints in thermal and 

power envelopes, which increases the incentive to scale based on numerically efficient kernels and ensures that no 

microarchitectural changes are made. 

The traditional techniques of network-on-chip and system-on-chip development often delay complete verification 

until late integration, when the error is most expensive to fix. A single bug during the layout at advanced nodes may result 

in a re-spin of $10 -20 million and a schedule slippage of 8-12 weeks. In the case of AI accelerators, there are other failure 

modes due to opaque numerics, such as quantization, stochastic rounding, kernel fusion, and sparsity, which can cause 

accuracy errors that may go unnoticed by naive unit tests. Annually, parallel execution becomes nondeterministic by the 

law of race or timing. Software levels, such as compilers and execution environments, develop autonomously. This can 

introduce hardware/software drift, which invalidates previous results unless they are constantly validated. The discovery 

of defects should again shift to the left, utilizing quantifiable gates that prevent regressions, minimize numerical drift, and 

ensure that performance budgets align with real-world expectations. 

This paper assesses the concept of test-driven design (TDD) adapted for AI-oriented hardware systems, including 

RTL, FPGA prototyping, and ASIC designs. It defines executable tests before implementation, documents golden-model 

oracles along with RTL, kernel boundaries, and permits integration by automatic regression involving RTL, firmware, and 

compiler passages. Measures taken are quantified into such targets as: at least 95% of operational functions and code 

coverage before tape-out, deltas in bound accuracy of ≤ 0.5 percentage points between FP32 benchmarks and INT8/FP16 
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quantization, system improvements: of ≥ 15% median latency improvement, ≥ 10% throughput improvement, ≥ 12% 

improvement in energy consumption measured as inferences per joule on representative workloads. 

It encompasses the scope of GPUs, non-processing units, and FPGAs that are used in data centers, as well as edge 

environments. The representative workloads include ResNet-50 and MobileNet-V3 (vision), GNMT-type LSTMs and 

BERT-base encoders (language), as well as mixed-precision training and inference flows. Utilizing Verilog/SystemVerilog 

RRL, UVM constrained-random testbenches, SystemC/TLM co-simulation, and Python or C++ code reference harnesses 

to create golden models, which are used as benchmarks. The thermal behavior and power are determined based on 

emulation-generated traces and activity estimates done at the gate level. It has limitations, such as omitting analog in-

memory computing and wafer-scale computing, and is practically limited in the size of datasets and the availability of 

devices. It analyzes the stochastic operation of seed control to evaluate stochastic operators and recreates the deterministic 

execution of traces to identify the location of Heisenbugs. The use of modeling thermal derating and voltage droop is also 

examined to verify guardbands. 

This research is structured into different chapters. Chapter 2 summarizes the existing literature on TDD concepts, 

hardware verification, and trends in AI architecture, motivating a measurement-focused approach. Chapter 3 presents 

several methods, including test taxonomy, oracle design, continuous integration pipelines, and acceptance thresholds for 

coverage, accuracy, latency, and energy efficiency. Chapter 4 provides an explanation of AI-specific verification and 

validation, including quantization-drift limits, fault-injection and stress reliability, and standardized benchmarking based 

on MLPerf-style KPIs. Chapter 5 documents experimental configurations and findings on FPGA prototypes and emulation 

systems, providing statistics and confidence intervals. Chapters 6-8 cover implications, outline future work, and give a 

conclusion, offering practical advice to platform teams with traceable metrics mapped to service-level goals and a verifiable 

artifact bundle. 

 

2. Literature Review 

2.1 Evolution of TDD 

Test-driven development (TDD) was invented in the field of software engineering, where tests are executable and 

both the implementation and the test execution are performed line by line, with small and verifiable increments, providing 

instant feedback. There are no precedents in single-process software for concurrency, timing, and observability restrictions 

that single-process software does not have, when expressed in either embedded or hardware description language (HDL). 

Hardware modules also connect through protocols, resets, and clocks, and verification therefore has to coordinate the 

stimulus, monitors, and checkers across a myriad of interfaces in parallel. Orchestration of the event [30]. The testbenches 

are required to respond to transactions, interrupts, backpressure, and timeouts in a manner that is deterministic enough to 

facilitate debugging of the test.  

As shown in the figure below, the TDD loop operates as follows: write a test, observe it fail (red), write the 

smallest amount of code necessary to make it pass (green), refactor, and iterate, providing executable line-by-line feedback. 

This cycle, in hardware and embedded contexts, must deal with concurrency and timing: not only with protocols, resets, 

and clocks between modules, but also with verification, coordinating stimuli, monitors, and checkers across a myriad of 

interfaces. Testbench Deterministic testbenches control transactions, interrupts, backpressure, and timeouts to facilitate 

failures that repeat exactly, enabling fine-grained debugging and maintaining software TDD discipline in HDL verification 

on a production scale. 

 

 
Figure 1: TDD cycle: deterministic tests guiding concurrent hardware verification 
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The conceptual template provided by the architectural underpinnings of event-driven microservices, namely 

producers, consumers, topics/queues, idempotency, and at-least-at-most-once delivery semantics, is used to conceptualize 

the organization of a verification environment that should withstand ordering variability and partial failures. In hardware 

verification, this corresponds to scorecards, drivers, and sequencers that are connected via events and assertions, along with 

test fixtures, to test the injection of faults and recovery. Explicit interface contracts and quantifiable acceptance criteria 

(e.g., latency budgets, protocol coverage) are promoted by first designing tests, which is also consistent with pipeline 

decomposition at the register-transfer level (RTL) blocks. However, there are challenges to adaptation: one cannot easily 

observe what takes place inside the synthesis; there is nondeterminism due to arbitration; and timing closure can render 

prior assumptions invalid due to microarchitectural changes, pressurizing event-aware test harnesses and decoupled oracles 

[4]. 

 

2.2 AI Hardware Trends 

General-purpose GPUs, domain-specific tensor/AI processors (TPUs/NPUs), and reconfigurable FPGAs have all 

been implemented in AI hardware. Precision modes defined across these targets determine the arithmetic units, memory 

footprints, and data flow. FP32 serves as an accuracy reference, FP16/BF16 are used to accelerate training, and FP8 or 

lower are utilized for high-density inference. Mixed-precision scheduling makes verification as challenging as having an 

upward selection of precision by different layers or operators, and retaining higher precision in accumulators to prevent 

devastating cancellation [12]. Practical usage is limited by memory bandwidth, on-chip buffer sizes, and the use of operator 

fusion and tiling techniques, which differ between platforms. Additionally, duty generates hardware surfaces of software 

interactions that must be regression-tested each time either a compiler or a kernel is modified.  

Workloads are also shifting from unimodal image recognition to multimodal pipelines, where text, vision, audio, 

and sensor streams are integrated, and thereby augmenting heterogeneity within tensors, sequence lengths, and temporal 

coordinates. Multimodality emphasizes pre- and post-storage and processing, as well as cross-domain synchronization. It 

sets high standards for test oracles that must confirm end-to-end semantics, rather than relying on single-operator numeric. 

These attributes drive a literature perspective where verification is not only arithmetically accurate but also data flow well-

formed and includes read-only invariants, desirable for the pragmatic requirements of models processing language, images, 

and signals collectively [31]. 

 

2.3 Traditional vs. Test-Driven Hardware Design 

Conventional hardware streaming focuses on specification and design, block testing, as well as high-level 

verification, and end-to-end bring-up, which is typically only done when prototypes or first silicon are available. On the 

occasions that this sequencing presents defects, such as protocol mismatches, reset races, clock-domain crossings, or 

throughput shortages, changes are most costly [3]. The growth of coverage is back-loaded; change management directly 

creates artifacts of verification closely tied to implementations, which can be easily refactored. By contrast, a test-based 

method indicates that realizable contracts precede the existence of RTL latency cocoons and precision conveniences, which 

comprise interface claims, latency capsules, and accuracy margins, as evidenced by red tests that direct minimal 

implementation to green. At the unit level, stubs serve as a means of anchoring stimulus and oracles early on, allowing for 

continuous integration and coverage, as well as defect density and performance proxies (cycles per inference on emulation) 

to be measured.  

Since expectancies are coded independently of microarchitecture expectancy, designers can investigate how much 

pipeline depth, buffering, or scheduling can be explored without causing invalid reactions to system behavior, and 

compilers can evolve kernel fusion while remaining within their accuracy deltas. Publish/subscribe stimulus, retry logic, 

and dead-letter scores are event-focused design patterns in software, which are converted into transaction scoreboards, 

response timeouts, and quarantine paths to enhance verification, reordering, and back pressure resistance. The overall 

impact is that it causes a shift to earlier bug discovery, higher coverage monotonicity, and less integration predation 

(constrained behavior) by continuously running, version-controlled tests. 

 

2.4 Prior Studies & Metrics 

Empirical reporting on TDD-related practices in AI systems research often focuses on model-level validation, 

rather than hardware, and encompasses a variety of strands inspired by measurable verification objectives. The study of 

dynamic memory and attention processes in natural language inference places special emphasis on sensitivity to sequence 

structure, gating, and selective retrieval [9]. It is not just numerically equal, but it also maintains relational and temporal 

links among steps. To handle hardware verification, this suggests test oracles that monitor invariants of memory access 

patterns, pointer lifetimes, and control-flow decisions, but not scalar outputs.  

Generalizing metrics include sequence-level accuracy windows, limited divergence under precision modification 

with a golden model, and covering state transitions that involve memory reads/writes. These views promote adversarial 

models as inputs to the verification harnesses that produce adversarial and long-range dependency inputs, and hold 

properties that assert about intermediate representations, rather than only final logits. They propose, as well, to measure 

bug-finding yield as itself a function of input curriculum complexity (such as in terms of length of sequence or depth of 
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memory to reveal corner cases in cache/coherency or tensor gather/scatter units). To make TDD artifacts predictive of 

reliability in field affordance under language or reasoning loads [26]. 

 

 

2.5 Gaps in Current Research 

There are numerous areas of gaps within the surveyed literature where TDD and AI-oriented hardware co-exist. 

Machine-learning numeric taxonomies are in a primitive state. No widely agreed-upon schema exists to categorize tests by 

operator type, precision regime, and tolerable accuracy deltas between compilers and hardware, despite the apparent 

requirements of mixed-precision and quantization approaches. The cross-platform reproducibility is also low, as the same 

model is frequently compiled to a different backend, differing in kernel schedules, fusion, and memory layouts [34]. 

However, the area lacks event-aware fixtures that would ensure timing and ordering tolerances are maintained and semantic 

equivalence is preserved. 

Benchmarking is more likely to highlight aggregate measures of quality and understate the existence of latency 

distributions, tail behavior, and power-normalized throughput in the face of realistic pre- and post-processing metrics that 

are needed to induce the use of regression gating (regression), as well as meaningful service-level targets. Very little 

research also describes change-management practices that anchor tests to specifications, as opposed to implementations, 

which necessarily reduce the reuse of verification assets between different microarchitectural refactors. Microservices, 

Event-driven progress, though succinctly described, still lacks a significant history of systematic translation into hardware 

test infrastructures, such as the idempotency of side effects, exact once delivery counterparts to DMA transactions, and 

compensating actions when a part of the system fails. These gaps fill the verification mismatch between the heterogeneity 

and the magnitude of modern AI applications, allowing the application of statistically reasonable acceptance criteria and 

enabling TDD to serve as a unifying mechanism across compilers, runtimes, and silicon platforms. 

 

3. Methods and Techniques 

3.1 Test-Driven Design Workflow for Hardware 

This design philosophy is a software implementation of the test-driven design (TDD) concept, ensuring that AI-

oriented hardware has its executable tests written in advance, before any register-transfer level (RTL) or high-level 

synthesis source code is generated. Each feature contains an initial failing test, an interface contracts specification, a timing 

specification, and numerical tolerances. Implemented as golden models, in Python or C++, which generate canonical 

outputs at the bottom of tensors, operators, and kernels, and acceptance envelopes are static [29]. In the case of vision and 

language workloads, the harness guarantees that for tension achieves top-1 accuracy deviation of less than 0.5 percentage 

points before quantization equivalence and transient error of less than 1% with respect to tensor metrics, all within fixed, 

tailored acceptance envelopes. Tests are arranged at the unit, integration, and system levels and assigned non-editable 

requirement IDs to provide their traceability. 

As presented in Figure 2 below, acceptance TDD and developer TDD will run concurrently, writing an acceptance 

test, running that acceptance test, and repeating with small tests as developer tests implement fine-grained behavior. 

Language checks for RTL/HLS are pretested in executable tests that enforce interface contracts, timing constraints, and 

numeric tolerances using Python/C++ golden models. The reason why failing tests lead to minimal changes is that the 

developer and acceptance suites are not working correctly. Tests with unchangeable requirement identifiers, arranged into 

unit, integration, and system levels, maintain traceability and acceptance envelopes of the tests. 

 

 
Figure 2: Combined acceptance/developer TDD loops for pre-RTL, test-first workflows 
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Three layers of stimulus are produced. Unit stimulus exercise leaf modules, such as a multiply-accumulate array, 

DMA engine, tensor interleaver, and cache tiles, are exercised using constrained-random strides, dilations, and densities. 

The sparsity density varies between 0% and 90%, and burst sizes range from 4 to 16 states-of-the-art KB. Near-arbitration 

starvation and credit underflow are triggered by integrating stimuli with on-chip networks and memory hierarchies, which 

involve 8-32 outstanding reads, hot/cold address mixes, and injected backpressure, accounting for 10-40% of the total 

pressure. End-to-end models, including ResNet-50, MobileNet-V3, BERT-base, and streaming ASR, are replayed at 

boosted deployment-realistic batch sizes, challenging compiler fusion decisions as well as runtime scheduling with golden 

oracles. 

Ecoflow Runner Automated regressions will operate using the simulator and emulator pools. Nightly suites are 

larger, with 10,000 or more test cases to run, with a wall-clock cost of 10 or 12 hours; per-commit smoke suites run in 20 

minutes or less. Failure on failures causes scripts to have a run-to-emission of waveform bookmark triage, minimized 

random seeds, logic cone reductions, and counterexample traces. The flake-rate ceiling is 1%, and all tests that have passed 

the threshold are in quarantine and being repaired [27]. The mean time to triage is set at 30 minutes for smoke failures and 

less than 4 hours for nightly regressions. Pre-tape-out criteria include 95% functional coverage, 90% code coverage, and 

zero open P0/P1 defects. 

 

3.2 Verification and Validation Techniques 

Formal verification is a means of providing exhaustive proofs of localized properties, which are seldom achieved 

through simulation. SystemVerilog Assertions, including safety properties APIs such as no write without grant on AXI 

bridges, no underflow/overflow in FIFOs, no stale credit in flow control, and no lost wakeup in interrupt controllers, are 

discharged through bounded model checking. With fairness constraints, liveness obligations are approximated, using 

progress counters [21]. Data path block proof-depth goals of 64 -128 cycles and control pipeline proof-depth goals of 256-

512 cycles find a trade-off between capacity and payoff. Simulation coverage, combined with proof cores and bounded-

depth coverage, completes the gaps. 

 

Table 1: Summary of verification & validation techniques and acceptance targets 

Technique What it validates Key configuration/targets Acceptance/output 

Formal 

verification (SVA 

+ BMC) 

Local safety/liveness 

properties 

AXI grant, FIFO under/overflow, 

credits, interrupts; proof-depth: 64–

128 cycles (datapath), 256–512 

(control) 

Proofs discharged; merge 

proof cores with simulation 

coverage 

Constrained-

random 

simulation 

(UVM) 

Breadth across 

shapes/precisions/schedules 

INT8/FP16/BF16; tiling/fusion 

sweeps; cross-coverage (e.g., INT8 

accumulate in BF16; batch=1, 

seq=2048) 

Coverage gaps identified; 

reproducible failing seeds 

generated 

Statistical 

validation 

Defect reproducibility & 

stability 

≥30 failing seeds to declare defect; 

post-fix escape rate <1/1000 runs; 

p95/p99 from ≥1,000 iters (95% CI) 

Closure only when thresholds 

met; latency/throughput 

budgets respected 

Co-emulation / 

acceleration 

Long-run, system-scale 

behavior 

Timing-annotated netlists on 

ZeBu/Palladium; 10^3–10^5× faster 

than RTL 

Supports ≥10k nightly tests 

and 24–48h soak runs 

Field I/O replay 
Protocol adherence under 

realistic ingress 

Replayed PCIe/Ethernet, camera, 

audio captures 

End-to-end quality validated; 

rare faults surfaced 

Power & thermal 

checks 
Energy efficiency and limits 

Activity-based estimation + board 

sensors 

≥10% inferences/J vs. prior 

RTL without thermal 

violations 

 

Randomization and constrained-random simulation provide breadth-simulation. The UVM environment is 

optimized for tensor shapes, precision regimes (INT8, FP16, BF16), tiling, and fusion options for the compiler. Interactions 

of the form (INT8 accumulate in BF16), (batch=1, sequence length=2048) are being monitored in cross-coverage bins to 

make sure long-tail cases are being executed. The statistical stopping rule requires 30 or more independent failed seeds to 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 

121 
Vol: 2024 | Iss: 06 | 2024 

 

declare an observable defect and requires a post-fix escaping rate of less than 1 in 1000 runs to claim closure. Online 

enforcement accuracy windows are monitored through streaming Oracle and are often bounded by p95 and p99 with 95% 

certainty across 1000 or more iterations per configuration to sample latency and throughput. 

The speed gap between system-scale testing and single-unit testing is overcome by co-emulation and acceleration. 

Timing-annotated netlists can be simulated as Timing-annotated hardware emulators (e.g., Synopsys ZeBu, Cadence 

Palladium), showing speedups of 10^3–10 ^5 times over RTL simulation of long sequences. This throughput supports 

nightly tests of 10k and above, as well as weekly 24-48 hour soak tests, which reveal memory leaks, deadlocks, and 

infrequent livelocks. Emulator farms are similar to field I/O: PCIe and Ethernet traffic, camera frames, and audio streams 

are replayed based on captures, ensuring that protocol compliance is followed and that there is end-to-end quality in the 

presence of realistic ingress. Power and thermal traces are gathered using activity-based estimation. The acceptance criteria 

are 10% or greater energy-efficiency features (inferences/J) compared to the previous RTL base, which does not violate 

thermal limits at the board level. 

 

3.3 Hardware-Software Co-Design 

Since compiler graphs and runtime schedulers play significant roles in hardware, co-design is an essential 

component. SystemC/TLM models serve as RTL twins at the transaction level, allowing driver bring-up and integration 

with the kernel to be done months before systems become usable with RTL. Shared with a standard library are typical 

instantiations of the same datasets, quantization tables, random seeds, and tolerances, which are used with SystemC, RTL 

simulation, emulation, and FPGA prototypes, thereby eliminating skew. Model-parity tests compare intermediate tensors 

between layers; an error of more than 1% relative or an accuracy difference of less than 0.5 percentage points between 

models would cause the build to fail [13]. The compiler passes emit manifests of fairness in the form of tile sizes, fusion 

boundaries, and memory layouts, which are understood as test inputs to provide a continuum of test exercises for schedule 

changes. 

Rocket cores are connected to a RoCC matrix-multiply accessor via the TileLink system, memory, periphery, and 

control buses, satisfying hardware-software co-design, as shown in Figure 3 below. SystemC/TLM twins enable the very 

early bring-up of drivers as shared datasets and quantization tables, seeds, and tolerances, maintaining parity between RTL, 

emulation, and FPGA. Model-parity tests gate merge in the case of a difference between the layer tensors of >1% or a 

change in end accuracy of more than 0.5 pp. Compiler outputs include tile sizes, fusion breakdowns, and memory layouts, 

which are fed into continuous check exercises and validation. 

 

 
Figure 3: RISC-V SoC with RoCC accelerator and tile-linked co-design buses 

The approach enables a 20% reduction in integration time compared to sequential flows, which involve staging 

hardware and software separately. This estimate is based on cycle-time instrumentation, specifically parity tests performed 

during each compiler commit and each merge step in the RTL, which reduces the average time to detect incompatibilities 

from days to hours. A service-level goal is to have 4 hours of handout time, adjusting for judgment of consistency, with 

suites exceeding three canonical models per area (view, vocabulary, sound) [14]. To handle nondeterminism, the harness 

can assist with deterministic replay through seed pinning and traffic capture/replay, and it logs sufficient metadata about 

tool versions, commits, manifests, and seeds to recreate any failure within a day. 
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3.4 Continuous Integration in Hardware Design 

There is continuous integration (CI), which coordinates linting, synthesis, simulation, emulation, and packaging, 

with release gates having metrics that can be measured. That pipeline includes RTL, constraints, and testbench code static 

analysis and style checks; path sanity fast synthesis and static timing; unit and integration simulations and coverage 

harvesting; emulation submission and artifact collation; packing of bitstreams, compilers, and firmware into reproducible 

units. Gates have 95% or more functional coverage, a test flake rate of 1% or less, a p95 latency of model-specific budget 

constraints, and ≥ 12% energy efficiency relative to the previous baseline [8].  

 

Table 2: An overview of CI stages, gates, and KPIs for hardware design 

CI stage / activity Metrics / gates Outputs / KPIs 

Lint, style, BoM scans (RTL, constraints, 

testbench; third-party IP/plugins) 

Static checks clean; supply-chain hygiene 

verified 

Secure, traceable sources; issues 

auto-blocked 

Fast synth & static timing (path sanity) No gross violations; clocks/resets sane 
Early timing feedback; reduced 

late surprises 

Unit & integration simulation with 

coverage harvest 

≥95% functional, ≥90% code/toggle; flake 

rate ≤1% 

Merge eligibility; unified 

coverage dashboard 

Emulation submission & artifact 

collation 

Queue SLA met; reproducible 

seeds/manifests captured 

Deterministic replay; long-run 

validation enabled 

Packaging (bitstreams, compilers, 

firmware) 
Reproducible bundles built per commit 

Auditable releases; environment 

parity 

Performance gates 
p95 latency within model budget; ≥12% 

energy efficiency vs prior baseline 

Performance/energy regressions 

prevented 

Stability gates 
Repro success ≥99%; test flakes 

quarantined 
Reliable CI signal; low noise 

Operational KPIs 
Defects/1000 LOC; MTTR <2 days (P1); 

≥5 green mainline builds/day 

Throughput and quality tracked 

continuously 

 

Those operational KPIs are the defects/1000 LOC, the mean time to repair (goal of < 2 days on P1), and build 

made (≥5 green mainline builds/day). Analogy CI integrates security and supply-chain hygiene, with static and dynamic 

application security testing corresponding to lint and simulation and emulation behavior, respectively. Software 

composition analysis scans are visible as bill-of-materials scans of third-party IP, verification IP, and tool plug-ins [16]. 

 

4. Hardware Verification and Validation for AI Systems 

4.1 Verification Challenges in AI Chips 

This is because verification of AI accelerators should struggle with non-determinism, which in turn requires bit-

exact testing. Reductions of atomic reorder partially-summed values, cache reorder random accesses, network-on-chip 

reorder random values, and asynchronous DMA propagate arrival jitter. As such, statistical envelopes are characterized by, 

and not equal to, verification. The conditions to be satisfied involve a 100th-percentile top-1 difference with an FP32 golden 

model following quantization, a percent error in the mean value of the middle tensors, and a KL-divergence in output 

probability values of 10^-3. The application of quantization drift also complicates oracles [23]. INT8 pipelines may 

physically reduce activations and leave higher-precision accumulators unchanged, resulting in asymmetric tolerances per 

layer. In kernel fusion, the accumulation order, associativity, and tiling boundaries may change; therefore, tests must assert 

that the results of invariants remain the same when schedules are changed.  

Precision loss is also observed in corner cases, such as denormals and saturations, as well as mixed-precision 

accumulators. Unit tests must verify input ranges, sparsity, 0-90% sparsity, and stride and dilation grids. To limit non-

determinism, it utilizes pin seeds, logs traffic for deterministic replay, and compares the layer-wise outputs with tolerances 

that progressively decrease as tensors are transformed into logits. The performance mindful checks run concurrently to 

ensure correctness: p95 and p99 latency should not exceed model-specific budget constraints, and throughput and energy 

expectations need to be met. Coverage should also be multi-facet: Before tape-out, functional coverage must be 95%, and 
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at control, toggle/branch coverage must be 90%, cross-coverage across (precision regime), (batch size), (sequence length), 

(fusion level). 

 

4.2 Fault Tolerance and Reliability Testing 

Reliability is ensured by fault injection and environmental testing, which reflect real-world deployment 

conditions. Soft-error Changing single bits in the register files, accumulator trees, SRAM arrays, and interconnect FIFOs 

in response to Poisson processes scaled to upset rates; silent data corruption (SDC) is established independent of the 

detected-and-corrected (DUE) counterparts. Goals are SDC < 1 per 10 12 operations with representative traffic and no 

escalation, which goes to system resets. As highlighted in Table 3 below, watchdogs need to identify 99.9% or more of 

control-path hangs within 10 ms, and recovery remedies— checkpoint/rollback, selective re-compute, and operator-level 

replay—must also fall within the service p95.  

 

Table 3: An overview of fault-tolerance and reliability test strategy 

Aspect What it tests Configuration / Stressors Pass / Target Metrics 

Soft-error 

injection 

Sensitivity to 

transient bit 

flips 

Flip single bits in RFs, 

accumulators, SRAMs, NoC FIFOs 

using Poisson processes scaled to 

device upset rates 

SDC < 1 per 10^12 operations; no escalation to 

system reset 

Watchdog 

detection 

Hang detection 

& recovery 

latency 

Instrument control paths; inject 

stalls and deadlocks 

≥99.9% hangs detected within 10 ms; recovery 

(checkpoint/rollback/recompute/replay) 

completes within service p95 

Voltage/thermal 

corners 

Reliability 

under 

environment 

extremes 

VDD: nominal, −5%, −10%; 

Junction: 25 °C, 55 °C, 85 °C; 

dynamic 10–30 W step loads to 

exercise throttling/QoS 

No functional loss; QoS maintained; thermal 

throttling bounded and logged 

FIT/MTBF goals 
Field reliability 

by deployment 

Data center: ambient 35–45 °C → 

FIT < 50 (accelerator domain). 

Edge/harsh duty: conformal coat, 

derated clocks, pervasive ECC → 

FIT < 100 

Meets FIT targets; MTBF consistent with fleet 

profile 

Protocol under 

stress 

Robustness of 

I/O and 

memory 

systems 

Replay PCIe/Ethernet and sensor 

traces during faults and 

thermal/voltage steps 

No protocol violations; bounded retries/replays 

Telemetry & 

observability 

Fleet-wide 

health and 

trend detection 

Stream corrected errors, replay 

counts, throttle duty-cycle, 

watchdog interventions into weekly 

dashboards/canaries 

High-fidelity logs (<0.1% gaps); incident time-

to-resolution improves; anomalies flagged for 

rollback 

Soak testing 
Rare fault 

exposure 

24–48 h runs at corners with 

production traffic mix 

No deadlocks/livelocks/memory leaks; stable 

power/thermal envelopes over duration 

 

Bracket data-center and edge: nominal, 5-, 10-, and 25 VDD junction and bracket data-center junction and 25°C, 

55°C, and 85°C junction, and throttling and QoS with 10-30 W step loads. FI and MTBF are goals of comparable fields’ 

profiles: data-center scenarios aspire to the accelerator space of FIT < 50 at ambient temperature of 35-45°C; harsh-duty 

scenarios have FIT < 100 with conformal-coated boards, derated clocks, and ubiquitous ECC, as shown in Figure 4 below. 

End-to-end health is quantified through telemetry streams, superseding various errors, including corrected, replayed, 

throttle duty-cycle, and watchdog interventions, and powering weekly reliability dashboards and canaries. The focus on 

continuous and fleet-wide telemetry and asset-level health reflects established practices in telematics, which involve 

monitoring events and providing detailed measures to stabilize incidents and associated costs [24]. 
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Figure 4: Fault-tolerance & reliability testing target thresholds (SDC, watchdog, FIT, telemetry) 

4.3 Benchmarking Frameworks for AI Hardware 

Benchmarking utilizes MLPerf-style KPIs, ensuring that the verification information aligns with go/no-go gates. 

Latency is reported in median, p95, and p99 ms/inference of representative batches, where batch=1 refers to interactive 

text and batch=8-32 to vision, and streaming windows in ASR/TTS. Throughput is in inferences/s at given accuracy, 

whereas the energy efficiency is in inferences/J or TOPS/W based on board-level power sampling at frequencies that are 

at least 1 kHz. A reference run ensures accuracy and facilitates any necessary modifications regarding accepted deltas [22]. 

The threshold of acceptance is specific to each model class. In the case of ResNet-50, p99 latency of 20 ms with batch=8, 

delta in accuracy =0.3 pp following INT8 quantization, and 1.12x energy behind the baseline.  

In the case of ResNet-50, p99 latency of 20 ms with batch=8, delta in accuracy =0.3 pp following INT8 

quantization, and 1.12x energy behind the baseline. In the case of BERT-base, at a single batch=1 short sequence queries, 

p99 30 ms, Δaccuracy 0.5 pp at mixed precision and throughput ≥10% faster than the earlier RTL cut. ASR streaming 

targets mean algorithmic latency ≤ 200 ms and jitter ≤ 20 ms on 10-minute traces. Bench harnesses should also be reported 

with stability and scale: < 1% test flake rate, at a rate of ≥ 10,000 endurance runs each night; < 0.1% intervals with missing 

data due to scale right to power and thermal sensors; reproducibility within 24 hours with minimum artifact bundle 

(bitstream, compiler manifest, seeds). Outputs are visualized as control charts, including 3σ control limits to threshold drift. 

Regressions can narrow the smallest successful seed on simulation and emulation, isolating logic and compiler variables. 

 

4.4 Case Examples 

Case A: FPGA-first TDD pipeline 

A prototype int8 vision accelerator had been implemented on an FPGA, and regressions at night had been run 

with golden oracles and 10,000 tests per night. Before TDD, it was reported that the average time to fix a bug (resulting 

from the failure) was 9.8 days due to nondeterministic seeding and sparse traces [19]. Deterministic capture/replay, as well 

as layer parity checks, reduced the mean time-to-repair to 5.7 days (a 42% decrease). There was an increase in functional 

coverage from 85 to 97% before so-called tape-out, and a one-third reduction in late timing-closure surprises due to 

schedule-conscious tests that emphasized FIFO credits and DMA bursts, thereby coordinating routing congestion. p99 

latency was improved by 12% at fixed accuracy. 

 

Case B: GPU regression battery for numerical drift 

A multilingual search engine pinned kernel schedules and replayed with a schedule of 2,048 randomly rearranged 

prompts, one per language, each week. In the last week, specifically in week 7, a fusion pass accumulation occurred for 

languages with low resources, causing the top-1 to move by 0.7 percentage points. This build was scrapped since smearing 

payment brought delta to 0.2 pp, and p95 production was maintained [10]. 

 

Table 4: Quantified outcomes from four TDD case studies: setups, interventions, results 

Case Context / Setup Intervention Outcomes / Metrics 

A — FPGA-first 

TDD pipeline 

INT8 vision accelerator on 

FPGA; nightly 10,000-test 

regressions with golden 

oracles 

Deterministic capture/replay; 

layer-parity checks; schedule-

aware tests stressing FIFO 

credits & DMA bursts 

MTTR 9.8 → 5.7 days (−42%); 

functional coverage 85% → 97% pre-

tape-out; late timing-closure surprises 

−33%; p99 latency −12% at fixed 

accuracy 
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Case Context / Setup Intervention Outcomes / Metrics 

B — GPU 

regression battery 

for numerical 

drift 

Multilingual search; weekly 

2,048 randomized prompts 

across languages; pinned 

kernel schedules 

Detect fusion-order 

accumulation drift; apply 

compensated summation 

Caught +0.7 pp top-1 drift on low-

resource languages; fix reduced delta 

to +0.2 pp; production p95 maintained 

C — Reliability 

canary for edge 

perception 

New NPU pipeline to 3% of 

robots across three climates; 

14-day telemetry study 

Emulation with injected jitter; 

remove faulty synchronizer; 

rollout gating via defect rate 

ECC correctables 2.5× site median 

traced to cold-start droop; projected 

FIT <15 post-fix; 0 P0 incidents; 

rollout expanded to 50% once defects 

<0.1 per device-week 

D — Mixed-

precision 

transformer on 

emulation 

INT8 weights, FP16 

accumulators; seq len 64–

2048; attention sparsity 0–

90%; NoC backpressure 10–

40% 

Retune credits; add two-entry 

bypass to mitigate KV-

cache/DMA burst conflict 

p99 latency −23%; throughput +12%; 

accuracy unchanged; issue unseen in 

short sims → need long, statistically 

powered runs 

 

Case C: Reliability canary for edge perception 

In three climates, a fleet of robots deployed a new NPU pipeline into 3% of the units. Telemetry indicators showed 

that over 14 days, ECC indicators were two and a half times more correlated with corrosion cold-start droop at the site. 

The problem was reproduced in emulation with injected jitter, and removing a synchronizer of the problem caused the 

hotspot to disappear while the projector Fit dropped below 15. There were no P0 events, and rollout occurred 50% of the 

device weeks after the defect rate decreased to less than 0.1. 

 

Case D: Mixed-precision transformer on emulation 

An INT8-weight Decoder with FP16 accumulators was tested with a range of sequence lengths between 64 and 

2,048, a range of attentional sparseness between 0% and 90%, and sparsity ranges between 10% and 40% backpressure on 

the NoC. A tail-latency cliff was observed when KV cache eviction coincided with DMA bursts. Retuning credits and a 

two-entry bypass improved the p99 by 23% and throughput by 12%, with no change in accuracy. This problem never arose 

in small simulations, indicating the need to have long-run, statistically powered tests [1]. 

 

5. Experiments and Results 

5.1 Experimental Setup 

The experiments tested an AI inference accelerator that had passed a regimen of Grand Tools of test-driven design 

(TDD) on three levels of execution: RTL simulation, hardware emulation, and an FPGA prototype. Prototypes utilized two 

Xilinx Virtex UltraScale+ VU9P units, based on PCIe Gen3, at an x16 carrier (225 W board constraint). Latency and energy 

could be compared at equal accuracy independently using an embedded 1.6 GHz GPU platform as an A/B baseline [2]. 

This toolchain consisted of Vivado 2022.2 synthesis/implementation, ModelSim RTL simulation, Cadence Palladium 

timing-annotated emulation, and a Python/C++ harness that generated constrained-random simulation components, 

acquired telemetry, and computed golden outputs. Compiler outputs (fusion plans of operators, tile sizes, memory plans) 

were versioned as manifests and accompanying all executions to provide guaranteed replay of all levels. 

Datasets and models were one out of three fields that represent data-center and edge inference. ImageNet-1k, 

implemented using ResNet-50 and MobileNet-V3, was utilized to handle visual tasks. WMT14 English-German was 

utilized with a Transformer-based model as a machine translation tool. The test-clean of the speech was performed using 

LibriSpeech with a streaming conformer. All the workloads were measured in three precision regimes: FP32 (golden), 

FP16/BF16 mixed precision, and INT8 inference with FP16 accumulation. Each arrangement was capable of emitting fixed 

seed, compiler manifests, and I/O trace captures, and was reproducibly deterministic. Each run was reproducible by the 

exact sequence of its reactionaries for every record of physical cause and effect. 

The test suites were defined at the unit, integration, and system levels. Unit suites were stressed on multiply-

accumulate arrays, DMA units, slices of caches, strides, and dilations defined by constrained-random spaces and NoC 

arbiters that were constrained by strides, burst sizes of 4 to 16 KB, sparsity of 0-90%, and using arbitration weights. Multi-

engine concurrency in integration suites with 8 to 32 excellent forward transactions and 10 to 40% injected-backpressure 

and verification of forward movement, the lack of credit fill underflow, and limited response time has been verified.  

System suites were rerun in an end-to-end model deployment, utilizing realistic batches: batch 8 in vision, batch 

1 in interactive translation, and 320 ms windows in streaming ASR. This involved online golden oracles and power 
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sampling at 1 kHz or above using board sensors [28]. Accepting criteria were set in advance: functional coverage should 

be 95% and code/Toggle coverage 90% before the tape-out; top-1 accuracy deltas must be less than 0.5 percentage points 

compared to FP32 after quantization; p99 latency should be within per-model budgets, and the improvement in energy-

efficiency compared to its predecessor RTL cut must be a minimum of 10%. 

 

5.2 Performance Metrics 

The primary endpoints were p50/p95/p99 latency (ms/inference), throughput (inferences/s), efficiency of energy 

consumption (inferences/J and TOPS/W), and high accuracy differences to FP32. They had a verification endpoint which 

included functional coverage, code/toggle coverage, mean time to repair (MTTR), and defect density (P0/P1 per 1,000 

LOC). Endpoints of stability tracked the flake rate and time to reproducibility. In contrast, reliability endpoints included 

the number of events avoidable with ECC-correctability correction per 10,000 inferences and the watchdog intervention 

level within the 10^6 inferences. Consumers had secondary diagnostics (thermal headroom (°C to throttle), power transient 

margin, and NoC Saturation indicators). As a search time reduction tool, predictive analytics based on historical CI 

telemetry were trained to rank risky changes and propose a few seed sets to reproduce, as well as rank regression shards, 

which is also evidence-based because analytics-supported DevOps can deliver better throughput and quality without a 

higher false-negative rate [17]. 

 

5.3 Results Summary 

The result of verification also increased significantly on a pre-TDD scale. The functional coverage rate stood at 

97.1% (95% CI: 96.6-97.6) versus 82.4% (95% CI: 81.5-83.3), representing an increase of 14.7 percentage points. There, 

an effect size of 2.8 was considered significant (Cohen’s d). Code/toggle coverage went up by 88.3 to 92.6 ( Δ = 4.3 pp; d 

= 0.9). The nightly flake rate dropped to 0.7% from 3.2% (ratio of the rates: 0.22; p < 0.01, Poisson test). MTTR of P1 

defect fell to 10.1 to 6.0 days (−40.6%; 95% CI: -46.3 to -34.2). P0/P1 issues defect density decreased to 0.51 per 1,000 

LOC (0.407). As shown in Table 5 below, aggregate schedule risk proxies improved accordingly: the probability of 

escaping defects during system bring-up decreased to 2.1% from 4.9% projected risk. The re-spin rate became more 

modeled (by -15.4%), reflecting the expected cost avoidance of approximately USD 2.1M at advanced-node mask pricing 

due to the reduction in re-spin. 

 

Table 5: TDD outcomes across verification, performance, risk, and ablation analyses 

Area Metric Baseline (Pre-TDD) With TDD Delta / Note 

Verification 
Functional coverage 

(95% CI) 
82.4% (81.5–83.3) 

97.1% (96.6–

97.6) 
+14.7 pp, Cohen’s d=2.8 

Verification Code/toggle coverage 88.3% 92.6% +4.3 pp, d=0.9 

Stability Nightly flake rate 3.2% 0.7% Rate ratio 0.22, p<0.01 

Repair speed MTTR (P1 defects) 10.1 days 6.0 days 
−40.6% (95% CI −46.3 to 

−34.2) 

Quality 
Defect density (P0/P1 

per 1k LOC) 
0.86 0.51 −40.7% 

Risk 
Escaped defects 

during bring-up 
4.9% 2.1% Risk −2.8 pp 

Cost 
Re-spin probability 

(relative) 
1.000 0.846 

−15.4%; ≈ USD 2.1M 

avoided 

ResNet-50 INT8 (b=8) 
p99 / Throughput / 

Energy / Acc Δ 

22.1 ms / 2,170 inf/s / 

3.51 inf/J / 0.00 pp 

19.3 ms / 2,418 / 

3.97 / 0.28 pp 

−12.7% / +11.4% / 

+13.1%; within tolerance 

MobileNet-V3 INT8 p95 latency / Energy 12.7 ms / 1.000× 11.4 ms / 1.122× 
−10.6% / +12.2%, equal 

accuracy 

Transformer-base 

(b=1) 
p95 / p99 / Acc Δ 24.8 / 31.2 ms / 0.00 pp 

21.9 / 27.6 ms / 

≤0.3 pp 

−11.7% / −11.5%, within 

gate 

Streaming ASR 
WER Δ / Median alg. 

latency 
0.00 pp / 1.000× ≤0.2 pp / 0.859× 

Accuracy stable; −14.1% 

latency 

Ablation (no 

deterministic replay) 
Flake rate / MTTR 2.9% / 7.8 days 0.7% / 6.0 days 

Worse without replay (+1.8 

days, flake +2.2 pp) 

Ablation (operator-

only tests) 

Tail-latency variance 

(relative) 
1.19× 1.00× 

+19% variance without 

schedule awareness 
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The performance and the efficiency surpassed the targets without errors. At ResNet-50 INT8, batch size = 8, p99 

latency decreased by 19.3 ms (18.9222.7) versus 22.1 ms (21.622.7) (data range), 0.28 pp versus 2.418 inf/s, energy 

efficiency also improved 13.1 (3.513.97 inf/J). Latency on MobileNet-V3 INT8 decreased by 10.6% (from 12.7 to 11.4 

ms), and energy consumption increased by 12.2% with equivalent accuracy. At batch = 1 on Transformer-base, p95 went 

down to 21.9 ms (24.8 -11.7) with 27.6 ms (31.2 -11.5) coming to within 0.3 pp of FP32. Streaming ASR maintained a 

constant word error rate (within 0.2 pp), and the slowest median algorithmic latency (with a window size of 320 ms) 

decreased by 14.1%. 

Ablations established areas of improvement and contributed to those measures. The elimination of deterministic 

capture/replay raised the rate of flake to 2.9% and increased the duration of an MTTR occurrence by 1.8 days. By turning 

off layer-parity checks, a numerical regression could pass, resulting in a 0.6 percentage point increase in ImageNet top-1 

accuracy. By using compensated summation again when fusing kernels, the drift was eliminated. It required 14 percentage 

points of additional nightly shards to predict risk scoring, achieving the same failures, with an 11-percentage point increase 

in emulator hours [18]. Switching schedule-conscious tests to operator tests increased tail-latency variations by 19%, as 

the order of accumulation through fusion had not been previously tested. Both emulation and FPGA verification were 

confirmed, and reverting each ablation did. 

 

 
Figure 5: TDD vs baseline: coverage gains, risk reductions, and faster, more efficient inference 

The scalability and reliability Characteristics of operational indicators in continuous integration were 

demonstrated. This system maintained an average of 5.6 green mainline builds per day; artifact reproducibility within 24 

hours was 98.9% based on bitstreams, manifests, and seeds. In 14 days of staging on a Canary, ECC correctables were at 

0.03 per 10,000 inferences; no watchdog resets occurred; and power-thermal headroom Watts were 8.4°C on average to 

throttle levels. In 120,000 full test executions, the numerical-drift monitor false-alarm rate was 0.4%, and all true positives 

would be traced back to a compiler or RTL change in a change window. These findings indicate that a verified TDD-based 

strategy can justify coverage in the high 90s, reduce MTTR by approximately a fifth, and provide single-digit improvements 

in latency and power usage without compromising accuracy at narrow deltas across various workloads and precisions. 

 

6. Discussion 

6.1 Interpretation of Results 

The empirical value improvements, including, although not limited to, functional coverage of 82.4 to 97.1, 

code/toggle coverage of 92.6, and mean time to repair (MTTR) of 10.1 to 6.0 days, indicate that test-driven development 

(TDD) withheld defects toward the end of the system; during the period of expensive fixes and rich developer context. 

Initially, instead of writing tests, engineers were pushed to code acceptance thresholds in the front end: a 0.5 percentage-

point top-1 drift versus FP32, p95/p99 energy consumption per model, and minimum inferences/J improvements. When 

these gates were in place, deterministic capture/replay and layer-arity checks were performed instantaneously by small 

finite-state machines, with small ambiguous failures translating to reproducible traces that could be quickly bisected. The 

consequence was an approximately 40% decrease in the amount of MTTR as well as a 0.7% nightly entering rate of flakes, 

which boosted the developer throughput: fewer heisenbugs were starved in review queues, more commits were being 

cleared in CI daily, and fewer hours would be spent in the emulator trying to guess the nature of a bug. The performance 

gains (−11-12% p99 latency; +13% energy efficiency) resulted from the performance sensitivity of the tests, which 

evaluated both tail latency, throughput, thermal headroom, and accuracy [6]. As a result, the service level objectives could 

not be influenced by optimizations. In short, previous fault surfacing, artifacted fixtures, and quantifiable contracts 

immediately attributed verification metrics to team productivity and adherence to schedule. 
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6.2 Strengths of TDD in AI Hardware 

Three strengths dominate the evidence.  

• Portability across revisions: The team was able to switch between different values of pipeline depth, NoC credit 

sizing, and fusion strategies without breaking the harness, offering 95% or more functional coverage while 

maintaining the ability to deliver five or more exploratory RTL branches each week.  

• Strong quantization guardrails were addressed by establishing tolerance windows per layer and utilizing 

golden-model documents of parity, which allowed for mixed-precision drift of up to 0.5 percentage points. This 

ensures that silent right-to-accuracy losses are impossible in cases where the compiler inverts the accumulation 

order (or tile shapes).  

• Stable operator/kernel APIs: fixtures were handshake-contracted, with backpressure behavior and reset 

semantics verified in all cases. New fixtures were developed to test the legality of schedules and the integrity of 

data flow in new fusion plans generated by compilers. The above strengths underscore the importance of clear 

boundaries of context in distributed systems, where well-defined contracts capture changes and minimize the blast 

radius in the event of refactorings.  

Hardware-wise, sharp module contracts and event monitors allow designers to work quickly while preserving 

parts of the invariants being monitored [7]. The accumulation of this effect resulted in monotonic coverage growth and 

defect localization. Additionally, during emulation and FPGA bring-up, several unexpected issues were encountered during 

software integration. 

 

6.3 Limitations and Trade-offs 

The approach is not free, as Oracle design and upfront test authoring, as well as test curation, consume about 10-

15% more engineering effort in the initial sprints. Programs with short horizon periods might be unable to cover the 

additional cost [15]. Velocity can be limited by emulator capacity: demanding 10k tests a night needed to be sharded and 

run using fair-share, and emergency reproducing tests had to wait up to 612 hours to be placed, lengthening the time it took 

to apply all critical fixes. The false-alarm rate of numerical monitors, at 0.4%, was low, but it still became distracting when 

compensated summation or higher-precision reference paths returned suspected regressions before they were cleared.  

The focus, even when high, is not cross-product bins are large: cross-product bins over precision regime × batch 

size × sequence length × fusion level can be privately combinatorial; untested corners can only be explored when sampling 

strategies evolve. Ensuring deterministic replay also instills discipline — shared seeds, fixed toolchains, and fixed 

manifests any slip in this case increases the cost of testing. Variations related to performance can create a risk of closing 

off more of the design space than desired when budgets are fixed too soon; prudence is necessary in operating on thresholds 

to ensure that currently valid optimization choices are not disallowed by obsolete gates. These trade-offs propose a gradual 

implementation: initially, operator-level tests and layer-parity tests should be performed, and tier-parity contracts at the 

system level should be implemented when the emulation capacity and telemetry have been fully developed. 

 

6.4 Industrial Implications 

The resulting improvements, measured in terms of delivery and risk outcomes, are essential to product lines. It 

has a 40.6% reduction in the MTTR and a 14.7 percentage-point improvement in coverage uplifts the compress stabilization 

phases; portfolio simulations estimated that the time-to-market of feature bundles of similar scope would be 20 per cent 

faster with mainline sustains of ≥5 green builds/day. p99-latency and power-saving improvements of a factor of two 

increase the deployment envelopes: an extra query/rack with constant quality in the data center, an additional duty cycle or 

battery in the edge, and the bandwidth to try heavier pre- and post-processing without breaking service budgets. In safety-

critical domains, TDD artifacts enhance auditability, as requirement tests, seed-reproducible definitions, and automated 

test packages have proven to translate well into quality systems and standards that require test-result traceability (e.g., ISO 

26262).  

Test-driven development improves the quality of code, the robustness of system design, developer productivity, 

and project cost, while also reducing the number of bugs already in the wild, as shown in the figure below [33]. In 

operational aspects, crews noted a 40.6 percent decrease in average mean time to repair, a 14.7-percentage-point increase 

in functional coverage, and an estimated 20% simpler time-to-market, at which mainline stability was achieved with five 

or more green builds per day. With p99 latency and power efficiency increased by approximately two-fold, performance 

envelopes became broader, and queries per rack, as well as longer edge duty cycles, were possible. Seed reproducible tests 

and automated evidence bundles enhanced safety standards auditing, such as ISO 26262. 
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Figure 6: Industrial impact of TDD: quality, productivity, cost, and time-to-market gains 

These verified pipelines should have been reflected in the budgeting: the emulator hours, CI concurrency, and test 

data management line items are in-pocketed by the estimated re-spin avoidance (modeled by a 15% avoidance) and a 

reduced field-incident probability (an escape rate of 2.1%). Organizationally, the microservice-isomorphic isolation of 

concerns, non-sensuous module boundaries, explicit contracts, and fixtures to follow over versions, allows for multi-team 

parallelism and less unsafe handoffs, which distribute the load in a more coordinated manner as programs increase in scale 

[5]. It is a practical suggestion to make TDD gates institutional, post latency/energy control graphs to identify drift early, 

and to maintain capacity at all times to conduct reliability experiments continuously, ensuring that quality can be assessed 

after release. 

 

7. Future Consideration 

7.1 Neuromorphic and Quantum AI Hardware 

Stochastic fixtures and probabilistic oracles are needed to extend test-driven design (TDD) to the design of 

neuromorphic and quantum accelerators. Spiking neural network substrates can be driven with jittered spike trains, synaptic 

noise, a change in refractory period, and device mismatch, and it was verified that temporal code rate, latency, and rank 

are correctly determined [25]. Establishing a limiting spike-time error of ≤1 ms or less at the p99 percentile and achieving 

a task accuracy of 0.5 percentage points above that of a high-precision surrogate are examples of practical gates. Poisson 

and gamma processes, as well as randomized synaptic delays and dropout of sensory events, are prohibited from being 

injected into fixtures to model sensor faults.  

In the case of quantum circuits, distributional tests should compare noise-soft results with the smaller 

distributional results in terms of a distance related to total variation distance ≤1e-2 using realistic shot budgets and small-

gate-noise models. Meanwhile, timing/thermal monitors should ensure that control electronics transients do not exceed the 

fidelity budgets. It is beneficial for both fields to have experience with replayable randomness (seeded noise) and end-to-

end task metrics, including invariants at the local level (of spike or qubit events) and those that are end-to-end (tolerant of 

benign randomness but exhibiting systematic drift). 

 

7.2 AutoML-Driven Verification 

AutoML can identify stress inputs, fusion schedules, and tiling parameters that maximize defect yield while still 

meeting accuracy and energy constraints. A bandit-based fuzzer tries sequence length, sparsity, stride, quantization, and 

burstiness to encourage seeds that induce greater assertion density or an increase in tail-latency deviations. A score based 

on multiple objectives should consist of discovery rate, novelty of failure traces, runtime cost, and reproducibility.  

The quantifiable goals will be a 30-40% decrease in the unique bug rate of constant hours of emulator and a 20% 

reduction in time-to-minimal-repro seed. To prevent overfitting to a specific device, the search alternates between 

simulators, emulators, and FPGA prototypes, recording kernel schedules and manifests in a history, allowing better results 

to be carried over between toolchains [35]. The curriculum ought to increase challenge - e.g., from batch 1 to streaming 

windows; from dense to 70-90% sparse - but accuracy deltas remain fixed, within pre-declared gates. 

 

7.3 AI-Assisted Test Generation 

Massive and diffusion generators can directly generate testbenches, stimuli, and golden-model scaffolds based on 

interface agreements and free-form requirements. Multi-object structure generative models are efficient at producing 

controllable scene graphs and dense annotations for perception pipelines, enabling systematic sweeps across the regimes 

of occlusion, lighting, clutter, and geometry [32]. A practical workflow, with a no-hand-crafts sequence level UVM, 

assertion template, monitor, and layer parity checker, and also a bare minimum failing test, leads the engineer through a 

series of prompts to achieve a test pass state with traceability.  
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Targets include a 25% decrease in test authoring time, an 8-12% increase in early coverage rate, and a subsequent 

lower false-positive rate oracle violation. These guardrails include policy-based code generation, style linting, and all tests 

involving safety-critical resets, clocks, or DMA, which must be subject to human inspection. Created test telemetry should 

report yield, defect classes, and maintenance costs to enable fine-tuning on what is not in the model, rather than making 

similar coverage. 

 

7.4 Standardization of Practices 

Comparability and audits across the vendors require interoperability. A portable schema must describe metrics 

(p50/p95/p99 latency, energy per inference, accuracy deltas), logs (kernel schedules, compiler manifests, tool versions, 

seeds), and fixtures (datasets, I/O traces, noise models). A failure should be reproducible using a minimal, reproducible 

artifact in less than 24 hours on reference hardware, demonstrating at least one of its manifestations [20].  

Accuracy at constant latency, energy at constant accuracy, control charts and three-sigma bands, and tail-dropout 

rates must be reported by benchmarks, and indicate instability. Reference harnesses must include deterministic replay, seed 

corpora, and golden outputs, such that vendors provide similar evidence to use without disclosing proprietary RTL. 

Conformance badges may have 95% or more pre-tape-out functional coverage, ≤1% flake rate, and documented acceptance 

envelope quantization drift (95 percentage points) between compilers and runtimes. 

 

7.5 Research Recommendation 

There should be quantification of causal relationships between TDD artifacts and heterogeneous accelerator 

reliability in future research studies. Long studies could establish correlations between coverage and flake rates, incident 

tickets, and field MTBF by quarter, as well as the effect sizes and confidence intervals required to support meta-analysis. 

Experiments based on ablation need to identify the contributions of deterministic replay, layer-parity oracle, AutoML-

guided fuzzing, and AI-supported generation to the yield of bug finding, tail latency, and energy variance. Measurements 

should be added for neuromorphic and quantum tracks, with probabilistic oracles, and adversarial genomics as synthetic 

corpora of perceptions of controllable multi-object models [11]. Socio-technical work must be helpful in the incentives, 

training, and review practices, achieving a functional coverage of ≥95% and a flake rate of <1% without a reduction in 

throughput, to enable the evidence-based adoption playbook. 

 

8. Conclusions 

This research establishes that test-driven design (TDD) provides quantifiable quality and performance 

improvement for AI-centric hardware when tests are written before RTL/HDL, golden-model oracles are fixed at the 

interface, and extensive and automated regressions are conducted on simulation, emulation, and FPGA prototypes. 

Functional coverage increased to 97.1%, code/toggle coverage to 92.6%, and the discovery of defects was shifted to the 

left, resulting in reproducible failures achieved through deterministic capture/replay. The nightly rates of the flakes 

decreased by 3.2% to 0.7%, and the average time to repair reduced from 10.1 days to 6.0 days. System-level results showed 

that, with no accuracy gates (≤0.5 percentage-point delta to FP32) violated, p99 latency improved by approximately 11-

12%, throughput increased by approximately 10% and energy efficiency improved by approximately 13%. Operationally, 

Mainline had 4.3 GS builds per day, and production quality achieved 98.9% in 24 hours of seeds and manifests. Reduction 

of risk exposure: The bring-up probability with escaped defects is reduced to 2.1%, and the modeled re-spin likelihood is 

reduced by approximately 15%, indicating significant cost savings in advanced-node masks. Taken altogether, this 

evidence suggests that TDD transforms the qualitative goal of the tooling, such as no regressions and predictable 

performance, into the quantitative gateways that significantly reduce coverage, triage, and stabilize tail latency and energy 

across compilers, runtimes, and silicon backends.  

The work adds a pattern of hardware-centric TDD that sees the correctness of AI-chips as a collection of 

statistical(contracts) as opposed to exact identity. Precision margins (<0.5 pp top-1 delta, <1% relative error on intermediate 

tensors), latency /throughput envelope (p50/p95/p99), and energy targets (inferences/J) are all made first-class tests to 

recognize nondeterminism due to parallel reduction, quantization and fusion of kernel/executable. Methodologically, the 

treatment combines formal proof of local safety and liveness with constrained-random simulation, as well as breadth and 

long-running co-emulation of system realism, and integrates the evidence from these methods through shared coverage and 

acceptance thresholds. SystemC/TLM twins, fixtures, and parity checks functionalities are key to hardware-in-software co-

design. These functionalities are operationalized using SystemC/TLM twins (AD with low integration time) and fixtures 

and parity checks (to prevent silent numeric drift during compiler evolution). A CI backbone gate delivers 95% and better 

functional coverage, budget-conditioned coverage from 1-99, and 10-12% and better energy savings over the prior RTL 

cut. Additionally, telemetry (ECC correctables, watchdogs, throttle duty cycle) enhances verification, focusing on 

reliability. This results in a portable verification asset base where tests are attached to interface/semantic contracts rather 

than microarchitecture, which is invariant across revisions and allows for exploratory design without compromising the 

invariants. 

Implementing TDD directly in AI hardware incurs direct costs, approximately 10-15% of the effort to write 

tests/oracles, queue contention in emulators, and version discipline to maintain deterministic replay. The empirical returns 

of the program, however, recoup these costs at program scale through greater coverage, 40 times faster repair of defects, 
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reduced escapes, and multi-digit improvements in tail latency and energy at unbroken precision. Practitioners are advised 

to instantiate statistical oracles and performance budgets as release gates, publish control charts of latency and energy to 

detect drift early, normalize minimal, 24-hour reproducible artifacts (bitstream, compiler manifest, seeds), and budget 

CI/emulation capacity as core infrastructure. Using these practices, TDD is a repeatable process that minimizes schedule 

risk, improves reliability, and enables safe experimentation with various architectures in both data-center and edge 

environments. 
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