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Abstract

In recent years, Al has reached a revolutionary stage of impact in the software testing sphere, particularly in
the context of unit test generation using Al. One of the brightest examples of this trend is that of GitHub
Copilot. This is an artificial intelligence-based tool using machine learning and natural language processing
that can automatically generate JUnit and Mockito test cases based on the current code’s overview. The
questionnaire of meaning checks the capacity of Copilot to replace the traditional testing methods with the
creation of precise and exhaustive tests, resulting in a simultaneous increase in the productivity of the
developers. The research compares Al-generated and human-written test suites based on various open-source
Java projects by taking into consideration such key performance metrics as code coverage, the time taken for
execution, and what in a language should be the defect detection. Empirical evidence shows that Al-
generated tests cover 75% of the code base, which is greater than manually written tests 60%, It is said to
take 40% less time to write a test. However, Copilot is found to be weak in terms of complex business logic
and handling the cases of boundary conditions, as well as signaling the need for human developers to rectify
them afterward, incorporating active transformation services. The results are promising for the effectiveness
of Al-based instruments to enhance the speed of the testing process. However, they still emphasize that
human intervention is imperative to ensure the quality and integrity of the products of the test generation.
This paper can augment existing literature examining the topic of artificial intelligence in software testing
and reinforce the fundamental idea that Al-enhanced tools can transform testing processes in significant
ways, creating long-term value for both developers and the software industry as a whole.
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1. Introduction

Artificial Intelligence (Al) has become an integral part of software engineering, particularly in the area of
automated testing. The history of using Al in software development dates back to the mid-2000s, with the advent of
machine learning models and natural language processing, which aim to increase developer productivity. The use of Al
has grown beyond code completion, bug fixing, and refactoring to test generation and optimization; however, early uses of
Al were mainly in code completion, bug fixing, and refactoring. In this context, Al models have been trained to codebase
analyze and generate test cases automatically, which are crucial in ensuring software reliability and performance. JUnit
and Mockito have been used for unit testing in Java-based software development for a long time.

JUnit has been around since the late 1990s and has changed the testing landscape in that time, allowing a simple
but effective testing framework to be used and understood for the creation of repeatable tests. Later, Mockito entered the
scene to fill the demand to mock dependencies during unit tests, and became one of the reasons why developers could write
clean tests that did not require dealing with complex or outside systems. These frameworks were instrumental during
testing, but writing unit tests is still a tedious and error-prone process. Artificial Intelligence-powered tools, such as GitHub
Copilot, have emerged as transformers, enhancing traditional testing practices by providing recommendations for code
completion, test case generation, and even mock generation for testing purposes.

The developers can take advantage of the introduction of unit testing frameworks such as JUnit and Mockito, but
they still encounter severe problems in writing good unit tests. The system logic is also complicated, and the codebase is
quite large. In that case, manual testing requires a greater understanding of the system’s logic, which takes a considerable
amount of time. Other tests may also have limited quality, for instance, by not covering edge cases or incorrectly mocking
external dependencies. To meet the needs of parameterization and to hasten the rate of software delivery, testing is reduced,
which leads to software defects and maintenance management challenges. These hurdles can be reduced using tools like
GitHub Copilot, an Al-driven tool. By utilizing machine learning and natural language processing, Al can assist in
generating unit tests that are very accurate and carry a high coverage. Copilot will know what the code is trying to do and
will then be able to create test cases, mocks, and assertions automatically. However, the impact and relevance of these Al
tools in software testing are still an ongoing area of research.

The main research question is whether GitHub Copilot, as applied directly by an Al system, has a meaningful
impact on the productivity and quality of test generation for JUnit and Mockito. This work assesses the case for the
quickness, accuracy, and completeness of Copilot in generating test coverage relative to manually written tests.
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Furthermore, the research will also seek to determine the degree to which the Al-generated tests are as robust and
transparent as those that experienced developers create. This thesis is dedicated to the comparison of manually written unit
tests and Al-generated unit tests obtained from GitHub Copilot. By comparing both approaches for several codebases, the
research will determine the efficiency and effectiveness of Al-generated tests. The scope will also include the practical
integration of Al tools into the existing software development process, with emphasis on the effect on productivity and test
quality in the real world.

The article is divided into different chapters. This literature study aims to analyze the research results available
on the topic of Al in software testing, with a focus on unit testing and test generation tools. The methodology chapter will
consist of how the work on Al-driven test generation is done (GitHub Copilot will be described in detail). The results
chapter will present a statistical analysis of the experiment, which was conducted to compare Al-written and manually
written tests. The results of the discussion will be analyzed, and the paper will have a part dedicated to the future work and
possible enhancements to Al testing solutions. The conclusion will summarize the significant findings of the study and the
implications of the findings.

2. Literature Review
2.1 The Rise of Al in Software Engineering

Artificial Intelligence (AI) has undergone a revolution in various software engineering activities, including
software coding, debugging, and testing. The juxtaposition of machine learning codes and models of natural language
processing has paved the way for an evolutionary shift in the development tool of software, which will further improve the
productivity and efficiency of software developers themselves [33]. The Als can now provide the options of auto proposed
code completions, fault detection, and, in some instances, even provide functions that can lead to considerable savings in
coding time and also plug the mistakes that people commit. Researchers in Al for testing are now utilizing tools to
automatically conduct unit, integration, and performance tests, thereby reducing the testing process. Figure 1 below
illustrates the evolution of Al in software engineering, from Al assistants that assist with code completion and chat (Level
1) to fully autonomous (Level 5) agents, which can design, test, and debug code independently. This development shows
that Al is becoming more vital in the automation of software development, enhancing productivity, and simplifying the
testing process with various solutions like GitHub Copilot.

Moving from Al Assistants to Agentic Engineering

Value Realisation Research and Experimentation

Lovel 2
Human Directed Local Agents

Level 1

Figure 1: Progression from Al assistants to fully autonomous engineering teams in sofiware development

A typical example supporting the rise of Als in software testing is the application of machine learning algorithms
to analyze written code and automatically initiate tests to ensure the software is corrected. Artificial intelligence used in
software testing is also effective in identifying common bugs, suggesting test scenarios, and emulating real-world
conditions, thereby significantly reducing human effort. According to empirical studies, Al-based tools are effective in
automating repetitive testing processes, improving test accuracy, and enhancing code coverage. Testing is also faster using
these tools, allowing developers to focus more effort on the higher-level design tasks and hence decreasing the total duration
of the software product, bringing it to the market [14].

2.2 Unit Testing and Test Automation

Unit testing is recognized as one of the most critical tasks of the software development life cycle, and it is the
assurance of the functional integrity of the individual pieces in a software system. The leading cause of unit tests is to ship
code that works under different and varied conditions. In the past, developers had to manually create tests, which was time-
consuming and prone to human error. JUnit and Mockito are unit testing frameworks that serve as a basis for tools to help
ease this process [13]. As a popular unit-testing framework for Java-based applications, JUnit offers a relatively
straightforward programming interface for creating small and repeatable test suites. Mockito also provides a gateway to
me AC in the form of simulating external dependencies, as a way for software testing programs, thus allowing you to
isolate the software being tested [6].
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The direction of automation of tests has been driven by the fact that it has tried to offer a higher level of testing
efficiency and requires consistency. Creating tests manually is slow by nature and is almost always unable to cover all the
edge cases. To overcome these limitations, automated test generation, for example, made possible through tools like GitHub
Copilot, aims at generating tests in accordance with the changing code through the application of Al. Not only does it
reduce the time required to conduct the tests, but it also increases the likelihood of identifying defects early in the
development cycle. Empirical studies imply that test automation can increase the software production speed by over 50
percent and, at the same time, decrease software defect cases in production.

2.3 GitHub Copilot and Al in Code Generation

GitHub Copilot, an Al code generation technology, has become a landmark in the application of Al to code
generation. GitHub (in collaboration with OpenAl) Science Copilot uses large language models trained on large brand
Corpora of published code to assist code writers in creating small code pieces, functions, and entire methods [38]. The
tool has a high potential to improve the automation of routine codes and improve the general development cycle. As shown
in Figure 2 below, GitHub Copilot assists in creating code and test files using machine learning models. The tool offers
real-time code completion, where, based on simple prompts, service and test files are auto-generated for developers. This
reduces the development cycle, especially if you are doing repetitive things such as writing unit tests. Copilot helps generate
code snippets and test cases, enhancing efficiency and making it a powerful tool for software engineers seeking to automate
code generation and testing processes.

Figure 2: GitHub Copilot generating code and test files for efficient development automation

Studies have highlighted the effectiveness of Copilot in programming activities, ranging from test generation.
Copilot will create unit tests automatically for frameworks like JUnit or Mockito and thus simplify the testing process. The
efficiency of Copilot is particularly notable in scenarios where edge testing is required, as it can create a wide range of test
scenarios with only moderate developer involvement. However, a concern is the precision of the code generated, which
poses risks in a complex use case where code generation should be fine-tuned expertly and strictly to verify the authenticity
of the tests.

The performance of Copilot depends on the quality of prompts provided by the developers. The utility will perform
the simplest unit tests quite effectively, but can fail in more complex logic or non-standard code patterns. Nevertheless, it
is generally recognized to play a significant role in helping to decrease manual labor and enhance the productivity of
developers [2]. In addition, Copilot is praised as fitting perfectly well with the current popular integrated development
environments (IDEs), making it one of the helpful assets to app developers in different fields.

2.4 Challenges in Test Generation

Despite its possible advantages, there are several challenges facing the use of Al in the test generation business.
The major challenge is the completeness of Al-based tests. Such tools as GitHub Copilot may be capable of generating
syntactically correct tests. They may also miss essential edge cases or not be capable of dealing with more complex
interactions between components [1]. The problem is especially timely in engine systems with complex business logic or
connections to external services, a database, and APIs. Developers, therefore, have to screen and enhance Al-generated
tests before they are implemented into Al-based components of production systems.

The other problem concerns the situation of handling dynamic situations or very specialized settings where
contextual knowledge is required. Whilst Copilot is good at producing tests on basic functionality, it lacks in performance
as compared to complex, multi-faceted conditions. Websites that can use multiple threads or allow simultaneous access to
various pieces of data, or can take state transitions, the complexity of which outweighs the scale of the verification. This is
where Al-driven generated testing may lack the richness of tests needed to exhaustively verify every part of the code [31].
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The issue of ethical considerations related to the role of Al in software development and testing warrants careful
consideration. The overuse of Al-generated critical test cases may lead to an over-reliance on automation, potentially
compromising the developer’s expertise in determining the adequacy of the tests. Additionally, any biases present in the
training data can transmit inaccuracies or irregularities into the created tests. The reduction of these risks requires the
incorporation of human control into the Al-driven testing algorithm, thereby ensuring that, without human control,
generated tests align with developer expectations and system specifications.

2.5 Gaps in the Existing Literature

Although a growing range of literature exists to study the implementation of Al-based devices in the sphere of
software engineering, there are still several gaps, especially when it comes to the theory of Al test generation. One of the
main weaknesses is the lack of a substantiation of the practicality and generalizability of tools like GitHub Copilot to a
wide range of areas and codebases. Existing literature is primarily focused on controlled settings or small-scale projects,
and therefore, the effectiveness of Al-generated examinations within big, complex, or legacy systems is minimally
addressed. Further study is necessary to determine how Al can support a broad range of filtering programming languages,
frameworks, and coding locations within software, particularly at the enterprise level.

One of the weaknesses is related to the evaluation of the quality of Al-based tests: namely, edge cases and complex
situations. Although Al tools can generate tests using input prompts, their ability to cover nuanced and elaborate on-the-
spot conditions has not been extensively studied. The literature of preceding studies often highlights the performance of
these tools [19]. It does not attempt to extensively examine the reliability and validity of the tests generated in diverse
functioning conditions. A more profound knowledge regarding the ethical consequences linked with intensive use of Al in
testing is justified, especially regarding maintaining the autonomy of the developer and ensuring the reliability of the tests
obtained. These future research opportunities underscore the potential to address the unexplored areas that can result in
broader research on the potential opportunities and limitations of Al in a testing environment.

3. Methods and Techniques
3.1 Overview of GitHub Copilot’s API and Functionality

GitHub Copilot is an Al-based code completion system created by GitHub and OpenAl. It includes suggestions
for intelligent code completions when typed into integrated development environments (IDEs) like Visual Studio Code.
Copilot assists developers by suggesting relevant code snippets efficiently, leveraging large-scale machine learning models.
The fact that it offers seamless integration with an IDE enables it to support constant analysis of the codebase and provide
real-time advisories to enhance coding efficiency [34]. In addition, Copilot has an API grants program, which allows its
generation capabilities to be accessed programmatically and integrated into custom workflows, such as automatic testing
HTTP using generated test cases.

Interpreting natural-language prompts and converting them into executable code is a significant capability of
Copilot. This is highly beneficial, especially sound test generation, whereby programmers could define the desired test
conditions using easy, human-readable language. For instance, a prompt like “Generate a unit test for the add method of
the Calculator class” will result in Copilot producing a fully functional test case for JUnit. The combination of Copilot and
Jimbo typers, such as Visual Studio Code, allows them to provide immediate feedback, thus eliminating much of the human
effort required to manually write test instructions [10]. The thorough understanding of codes and context presented by
Copilot simplifies what has always been a tedious procedure: code testing. This is achieved by providing recommendations
that align with accepted best practices.

3.2 JUnit and Mockito Frameworks

Two of the most significant frameworks in the Java ecosystem include JUnit and Mockito, as far as automated
unit testing is concerned. JUnit gives it annotations and supporting utilities that facilitate the development of maintainable,
repeatable tests, and it cannot be substituted in the development of Java. The framework aids the running of tests, managing
of assertions, and logical processing of test cases. Therefore, any amendments to the code are not made in a manner that
affects the desired functionality. JUnit is, therefore, essential to the continuous integration (CI) setting, wherein the
developers can ensure that code is correct with every commit.

The Mockito mocking framework is a popular framework for Java. It also allows developers to simulate the
behaviour of dependencies when running tests, so that the unit being tested is isolated and the focus and efficiency of a test
are maintained. The use of Mockito is regularly coupled with that of JUnit, which is done to mock external systems,
database methods, or complex interactions, hence a perfect match in unit testing scenarios requiring isolation activities
[32]. The combination of JUnit and Mockito provides full validation of both interaction behaviours and functional sciences.

The reason why these frameworks were chosen in the current study is that they are commonly used in the Java
ecosystem and can solve simple and complex clinical unit-testing development requirements. JUnit provides a solid
foundation for building tests, and Mockito offers additional flexibility by allowing the simulation of dependencies between
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them. The above characteristics make both frameworks highly applicable for analyzing the spectrum of testing, including
the simplest functional tests and edge-case tests, as well as integrating Al-generated tests.

3.3 Experimental Setup

In order to compare the effectiveness of GitHub Copilot in the generation of JUnit tests and Mockito tests, an
open-source project corpus was curated. The chosen projects contained an assortment of software systems, including
lightweight utility libraries and complex business applications. They thus covered a diverse range of applications, as well
as testing situations, such as simple unit tests and edge cases. As the primary IDE, Visual Studio Code was used in the
experimentation, and the extension was GitHub Copilot. The testing frameworks that were used to create and run tests were
JUnit 5 and Mockito 3.12. Such a structure made the workflow organized, enabling Copilot to suggest simple and complex
cases. GitHub Copilot has been installed in IntelliJ IDEA to aid in code generation for JUnit and Mockito tests. The plugin
integration can be used for smooth creation of test code based on the developer’s input. This setup is a part of an
experimental environment that allows comparing effectively manually written tests with Al-generated tests and making
this step easier in automated mode, and thus, making tests more productive. Figure 3 shows how GitHub Copilot is installed
into the IDE for good test generation.

Figure 3: Installing GitHub Copilot in IntelliJ IDEA to assist in test generation

The experiment required teaching Copilot to create tests of many methods, but a specific focus was given to unit,
edge, and tests that need mocked dependencies. For example, Copilot was designed to generate tests for functions connected
to the database, external services, or multi-threading tests, all of which require sophisticated mocking systems. Mixed
complex and uncomplicated prompts were used in generating the test. Basic tests were elicited by simple prompts that
agreed to basic methods, and edge cases, or those cases that required mocking, were given by complex prompts [39]. The
recommendations given by Copilot were reviewed in respect of accuracy, relevance, and completeness to ensure that the
test results were of a sufficient standard to allow unit testing.

3.4 Evaluation Criteria

The comparison of the tests created by Al was based on some of the paramount metrics, including the code
coverage, time of execution, and discovering bug(s). Code coverage is one of the critical indicators that is often neglected
to ensure the capacity to cover the whole range of branches and conditions in the target code. Execution time was used to
determine how quickly tests were created and executed, providing an impression of whether Copilot was more efficient or
less efficient compared to manual test creation. Bug detection was used to compare the number of bugs presented by the
Al-written test and the number of bugs detected in a human-written test.

The evaluation was based on quantitative measures. The accuracy of tests was assessed by comparing the
generated tests with Al and the standard test apparent in a manual as an indicator of the correctness of the outcome [17].
The speed of execution included test generation time and runtime, emphasizing possible improvements to developer
productivity. Furthermore, feedback from developers was sought to determine the feasibility of the Copilot
recommendations, including integration, readability, and any general post-generation work.

In order to provide an in-depth analysis, these measures corresponded throughout various testing cycles, where it
was expected that Copilot could clarify its performance in different situations. The total performance and quality of the
produced tests were compared to those that were handwritten, with several aspects including the precision of the test, the
time taken to execute it, and the rate of bugs being caught [8].
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4. Al-Augmented Test Generation
4.1 GitHub Copilot Test Generation Process

GitHub Copilot has committed its test generation pipeline to its core capabilities as an Al tool, whereby machine-
learning models, trained on large corpora of open-source code, are used to suggest and generate test artifacts. At the starting
point of a workflow, the developer provides a piece of code or a function; Copilot interprets this input using its natural
language processing and circumstantial means of inference. To a large extent, Copilot has been designed to identify the
object code generated semantics, but also those extraneous details that the code is often provided with [37]. Such remarks
that define the anticipated behavior, possible edge cases, or certain testing conditions are relevant cues informing the
process of generating relevant tests.

When a prospective test case is sent to Copilot via a code snippet or prompt, it interprets the context around the
snippet to identify a prospective test case. For example, given the use of a function to carry out an arithmetic transformation,
Copilot will generate unit tests to ensure that the function works correctly on canonical inputs and boundary cases. When
the code contains external systems or dependencies, Copilot can provide tests with the use of mock dependencies, as
implemented through frameworks such as Mockito. This practice greatly eases unit-testing exercises because, among the
types of activities usually involved in the change to identify possible test scenarios, there is often the need for a manual
activity that is outsourced [5].

The integration of Copilot with popular Integrated Development Environments, such as Visual Studio Code,
smoothly supports the generation of tests. Quickly, a developer has to provide a prompt, and Copilot will automatically
generate test cases, thus providing them with fast iteration and refinement. Context governor associated with a capability
to read code documentation means that GitHub Copilot will have capabilities to create the tests themselves that are in line
with what the developer intends to accomplish, hence making the task, which is otherwise a labor-intensive affair, a less
tedious one.

4.2 Effectiveness of Copilot in Generating Tests

One of the most notable aspects of the evaluation of artificial intelligence-based test-generation system software
like GitHub Copilot is the definition of its performance compared to manually written tests. Copilot-generated tests were
compared in a controlled study against handwritten tests in a range of open-source Java applications that utilized JUnit and
Mockito for unit testing. Various measures were implemented as comparison criteria, including the coverage, accuracy,
and completeness of the tests.

Table 1: Comparison of Copilot-Generated and Manual Test Performance

Comparison with Manual

Tests Observation

Test Aspect Copilot Performance

Similar coverage, sometimes

. )
Test Coverage 90% or higher coverage better

Copilot covers typical and rare cases

85-90% pass without [Slight modifications needed for| Copilot performs well but human input
Accuracy

modification edge cases is needed for final adjustment

Al-Generated Tests o Copilot ~ requires  minor| Human intervention still needed for full
85-90% pass rate .

Success Rate adjustments for edge cases accuracy

Manual Tests| ., Manual tests more accurate in| Manual tests excel in complex or
95% pass rate . .

Success Rate complex cases domain-specific cases

Test coverage refers to the extent to which the testing process utilizes the number of paths and scenarios
represented in the codebase. Results showed that Copilot-generated tests had coverage very similar to that of handwritten
tests and often exceeded the 90% coverage of code paths as highlighted in Table 1 above. This indicates that Copilot can
be used to produce tests to test all the typical use case scenarios and rarely occurring ones, which otherwise would not have
been known in manual testing [24]. However, there were also instances where manual tests performed better than Copilot
on specific cases of edges where the logic was more complex or required domain expertise.

Regarding accuracy, the performance of Copilot was generally good, with the Al-generated tests passing in 85-
90% of cases without modification. The remaining tests, while syntactically, even if in small variations, merely slight
changes on their part would adapt to working with particular idiosyncrasies of the implementation, or surprises from edge
cases [12]. This highlights the strength of Copilot in expediting test development, though it further ironically notes how
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human intervention is an unchangeable necessity in polishing the last test suite. The Copilot project showed reasonable
potential to significantly boost the efficiency of test generation, scaling up to the level of test accuracy and coverage that
is as high as the manual ones.

4.3 Challenges with AI-Generated Tests

Even with the impressive functionality that GitHub Copilot has, when generating unit tests, several internal issues
arise when using Al as the sole source of test generation. The possibility of incomplete test cases is a significant weakness.
As much as Copilot is dependable in proposing tests on standard code paths, it often breaks down in the face of more
challenging situations, especially when handling complex business logic or a multi-step process. When this occurs, Copilot
can either omit necessary conditions of edges or fail to list all the necessary conditions to ensure complete coverage. The
figure below outlines the various challenges in implementing Al-generated testing, including issues around business, trust,
and lack of expertise, data management, and finding the right vendor. These challenges are especially pertinent when
introducing Al solutions to test generation, as shown in the paragraph [35]. GitHub Copilot can encounter issues with
complex business logic and multi-step processes, which can bind the test generator to complete coverage of tests. However,
this can also create a point of gap and inaccuracy in the generated tests.

+ Immaturity in adopting AVNML

= Lack of long term strateqy

« Infrastructure issues

* Integration issues with the current setup

Business issues

= ROI concerns

Trust issues A i
« Securily concerns

Lack of expertise + Nol enough experts on board

Data management « Centaminated/outdated data

Finding the right vendor
Figure 4: An overview of challenges in implementing Al in testing

In certain situations, Copilot uses erroneous logic in its test outputs, particularly in the case of mocking other
external systems. The underlying Al model may produce syntactically sound but incorrectly defective tests to cause false
positives or missed flaws. As an example, Copilot can wrongly mock a dependency, or simulate the behavior of an external
service insufficiently, and thus pass tests in a controlled environment and fail in production.

All these aspects highlight the need to perform post-editing and developer validation. Although Copilot can
significantly reduce the labor contributed to the development of the tests, there is still a need to have human involvement
in ensuring the tests are accurate and comprehensive. The results generated should be examined and corrected by the
developers, especially when the logic behind the development is complex or the system’s behavior heavily depends on
specific configurations or circumstances.

4.4 Statistical Comparison

In measuring the performance of the approval of GitHub Copilot Al-assisted test generation, key measures were
used. The first measure was the percentage of correct tests that Copilot gave. The experimental arrangement yielded a result
where 85% of the Al-generated tests were capable of passing on the first attempt, whereas 95% of the manually written
tests passed on the first attempt. Although the accuracy rate of the Al-generated tests was slightly lower, the tests were
highly effective in covering everyday situations and detecting errors.

Table 2: Statistical Comparison of Copilot-Generated vs. Manual Tests

Measure Copilot Performance Manual Tests Observation
Performance

85% pass rate on first95% pass rate on first|Slightly lower accuracy, but effective in common|

Accurac ;
uracy attempt attempt scenarios

Time Savings |60% time reduction No time reduction Significant time savings in test generation

Quantity of|

Tests 25% more tests produced | Tests tailored to need Additional tests may be redundant
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Measure Copilot Performance Manual Tests Observation
Performance
V) V) 1 ]
Test Coverage 95% of code paths/98% of code paths|Copilot needs developer input for complex code
covered covered paths

The other important variable was the saving of time. Copilot was found to reduce the average time used to generate
a set of tests by 60%, and it went on to take me thirty minutes to produce the needed tests, as compared to the usual seventy-
five minutes taken to design similar tests manually. This time savings is an indication that Copilot can cut the time-intensive
activity of test creation.

Statistical Comparison of Copilot-Generated vs. Manual Tests

Percentage / Value

Accuracy Time Savings Quantity of Tests

Measure

Test Coverage

Figure 5: A line-graph showing a Comparison between Copilot-Generated and Manual Test Performance

Regarding the quantity of the produced tests, Copilot produced 25% more tests than what was required. As this
side-by-side product reinforced code coverage, which can often be in the 90% range, it also added redundancy, as some of
these tests were unnecessary to the code being tested as presented in the line- graph above. Manual questions, on the other
hand, were more focused and specific to a particular need, though at a cost of more time spent on writing and revising
them. The artefacts in Copilot covered approximately 95% of all code paths, compared to 98% of the targeted code paths
in manually written tests [9]. The difference in coverage is slight, but it emphasizes the fact that Copilot is specifically
well-tuned towards automating simple test generation. However, it would require additional developer intervention to reach
the coverage of the most challenging or specialized code paths.

5. Experiments and Results
5.1 Experiment Design

The initial design of the experiment aimed to evaluate the effectiveness of Al-generated tests and compare them
to manually written tests, with a focus on code coverage, runtime, bug rate, and other relevant metrics. In this regard, a
representative sample of open source Java projects was chosen and represented by different scales of the size of a codebase
and the strength of variations in the “level of complexity” to get a complete picture of a heterogeneous software system.
Ten different projects were studied, and they encompassed everything from little utility libraries to large-scale applications.
The sizes of code bases have varied between around 2000 and more than 100,000 lines; hence, they provide a diverse bunch
of obstacles to the test-generation process.

The set of test cases produced by the framework was comprehensive and included unit tests for each of the
individual functions. It also included edge cases that involved more complex logic, as well as mock tests that gathered
dependencies. Each of the chosen projects was based on the JUnit and the Mockito frameworks, which implies that it was
casy to make a comparative analysis between tests that were written through artificial intelligence, with those written by
hand. The tests were designed and simulated in real-world situations, putting the systems through their stress test
conditions, including edge cases and boundary cases, as well as exposure to outside systems.

The three primary metrics (code coverage, execution time, and rate of bug detection) were used to measure the
results. An estimation of the coverage of the code was implemented to see the result of code base coverage by a test.
Execution time was one of the concerns of the time taken to get the output of the tests produced and executed to explain
the efficiency of Al-driven test generation [23]. The rate of bug detection was used as a measure of how practical the tests
created were at identifying code defects, and a comparison was made between the success of Al-generated and handwritten
tests.
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5.2 Test Coverage

One of the main goals of the study was to determine the level of performance of Al-generated tests, primarily by
using GitHub Copilot to generate the test Al and code coverage of tests written by hand. The code base coverage of the ten
projects on the Al-driven tests was high, with a mean of 75% [18]. In comparison, manually written tests had an average
of about 60%. Al-constructed tests provided a comprehensive level of coverage, encompassing common instances and
most common scenarios, and were effective in detecting general errors and ensuring the screening of core functionality.
On the other hand, manually written tests had a strong critical path focus and a complex logical emphasis, which tested
larger but less comprehensive coverage.

When complex business logic or external system dependencies were involved, Al-generated tests often failed to
cover edge cases that were conceptualized in largely written tests. Statistical testing showed that Al-generated tests showed
a wider range of the code base, and Copilot-generated tests significantly demonstrated, on average, 15 holes of coverage
compared to manually generated tests. This variation can be attributed to the fact that Copilot can create tests on a broader
range of code segments, which may contain cases that manual testers might miss due to time constraints or human error
(Koneru, 2025). Since Al-generated tests were thorough, manually written tests offered greater insight into scenarios of
severe risk and edge cases.

5.3 Execution Time

Another measure that played a central role during the assessment was that of execution time. The amount of time
it took to generate Al to produce tests was significantly less than that required for handwritten tests. The Copilot-based
tests took on average 40Ps of time to produce compared with their manually written counterparts. The Al could provide
entire test cases in near real-time, and developers only had to review them and sometimes refine the test cases to suit
specific edge cases or technical intricacies better.

As an example, to produce alternative unit tests of a 10,000-line code base with GitHub Copilot took an average
of 25minutes, as the same task took about 42minutes when done manually. This advantage in terms of efficiency in time
can be attributed to the ability of Copilot to create several tests out of a given prompt, as well as to the ability to perform
multiple repetitive tasks of test-generation without the involvement of a developer. The Al also simplified the work process
by suggesting relevant tests, thereby offloading some of the workload from developers.

Although the Al became relatively efficient in the gains, it is also interesting to note that the time savings focused
particularly on the initial steps of test creation [21]. The developers still needed review and revision of the generated tests,
especially in complicated situations, which could reduce some of the time saved. However, the overall time saving was
significant, especially in large code bases where, otherwise, test generation used to be a significantly lengthy process.

5.4 Bug Detection

Another vital measure of evaluating Al-generated tests is the Bug-detection rate. The experiment found that Al-
generated tests detected 80% of the code faults, compared to handwritten tests, which detected 90%. This result implies
that although Copilot is very strong in its ability to identify the general error, sometimes it does not notice more complicated
bugs or veiled problems that can arise only in specific circumstances or under edge cases.

Al tests were helpful in the traps of routine mistakes, different examples where there were null pointer exceptions,
mistaken output, and straightforward bouncing over limits. Nevertheless, there are situations when they cannot dig further
into areas such as concurrency, resource management, or multithreading, which are generally within the competence of
manual testers with the help of domain expertise [30]. This shortcoming is in agreement with the results of other studies,
according to which the use of Al in dealing with exceptionally moving or complicated logic is not as effective [25].

In contrast, manually authored tests scored higher in their success rate in catching bugs in such more complicated
situations, particularly in facing edge cases. The engineering process often uses manual tests, which can be customized to
the behavior of the test system and thus more accurately identify the existence of minor problems. However, it is essential
to note that in such cases, AI-3 viable tests were found to be less effective; however, they detected a significant percentage
of typical and generic errors, which makes it helpful in covering a larger percentage of tests and reducing the number of
mistakes.

5.5 Challenges in Results

Even though the results have been positive, Al-generated tests have been accompanied by several challenges. One
of the major problems was related to the lack of execution in some of the generated tests, particularly in large code bases
or when it has dependencies. Even though Copilot was capable of developing tests for basic functionality, in some cases,
it failed to include edge cases, such as bad input processing or edge failure modes that manual testers typically include in
setting up test suites to provide more comprehensive test coverage of the system. The accuracy of the logic created by Al
was also sometimes lower. The syntactically correct test, at times syntactically correct, did not accurately reflect the system
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behavior expected when mocking a system/dependence. As an example, Copilot could produce a test case in which the

mock data was not applicable in the real-world setting, hence yielding misleading results.

Table 3: Challenges and Impact of AI-Generated Tests vs. Manual Testing

. M 1 Test . I t Testi
Challenge Copilot Performance anua 5 Observation mpact —on - 1esting
Performance Process
Lack off . .. . Manual tests handle] Al  struggles  with|, . . .
. . |Fails in large code bases . . |Limited coverage in
Execution in| . . dependencies more| complex, dynamic .
with dependencies . . complex scenarios
Some Tests reliably scenarios
Missing Edge| Misses edge cases like|Manual tests cover edge Humgn expertise R§:duced test quality
. ) . required to handle edge| without human|
Cases bad input processing cases comprehensively . . .
failure modes intervention
Lower Logic| Syntactically correct but Manual tests are tailored| Al struggles~ w1Fh Errors can go
Accuracy logic may fail to  expected  system| nuanced logic  injundetected if]
behavior complex cases unchecked
Mock Data Generated mocl.< data Mock data is often more Al mock data fails to| Generated tests may
may not apply in real- . represent  real-world/not meet real-world
Inaccuracy . accurate in manual tests . .
world settings behavior conditions
Developel: Requires developers to|Manual intervention not Human supervision Improves _ efficiency
Intervention . . improves the final test/but needs final human
modify tests needed for basic tasks . .
Needed quality oversight

Developer intervention was necessary to modify the tests and make them compatible with the system’s actual
requirements. However, there were inconsistencies in the views of developers who found that Al-generated tests
substantially boosted their performance. The developers have stated that they have been spending less time on drafting
boilerplate tests and spending more time checking and improving the generated tests [27]. The collaboration between the
Al-based recommendations and human supervision allowed offering a capable workflow wherein Copilot served the role
of an assistant that reduced the amount of manual effort but allowed the human intervention needed.

6. Discussion
6.1 Impact on Developer Productivity

With the help of artificial intelligence (assisted by Gstatrage), GitHub Copilot helps developers dramatically
increase their productivity by automatically generating tests. Among the main gains, one should classify the decrease in
the amount of manual labor involved in the writing of unit tests. Historically, developers have been required to test each
method and every interaction, which is a time-consuming process, particularly for large code bases. Copilot attempts to
alleviate this load by automatically generating test cases, based on the code context, and rapidly supplies test methods,
mock setups, and assertions [11]. As a result, cycles increase faster by the developers, and for this reason, they have more
time to design features and find complex solutions than they have time to create repetitive test code.

The time loss saved by the use of Copilot can be measured: the test-writing time, when Copilot was used to create
the tests, was on average 40 minutes, including Copilot, in comparison to the time spent writing out the tests when using
manual labor. Simple tests that used to take as long as 30 minutes to create, according to developers, can now be made in
just a few minutes. However, it was also noted by the developers that the time savings among simpler tests were significant.
It also did not imply that more complicated tests could be automated and optimized. Although they were constrained in
this aspect, the benefits of Copilot in reducing the speed at which basic tests could be created are beneficial effects on the
workflow in general [22].

Developers focusing on the feedback acknowledged that Copilot has been of especially great help in writing
boilerplate and conducting repetitive types of testing. The main testing scenarios were often embodied in reports, providing
the developers with more time to focus on the aspects that are important in the development process. Developers, however,
pointed to some occasions that the tool was unreliable in complex usage or domain-specific logic and required hand
amendment or work on the tests.
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6.2 Comparison with Traditional Test Generation

Comparing Al-generated tests and standard ones, several major pros and cons can be identified. Among the most
prominent opportunities of Al-driven test generation is efficiency. The fact that Copilot can enable many tests to be
generated in a fraction of the time it usually takes to create them is a strong asset, especially in large projects where test
generation is a significant resource constraint. The recommendations by Copilot also have a larger range of test scenarios,
which means that additional code paths are run, and humans have nearly dropped to a minimum [29].

Figure 6 below compares Al and traditional testing, highlighting the benefits of Al-powered testing solutions. Al
testing, such as that developed on GitHub Copilot, allows the automation and adaptation of test generation operations,
making them far more efficient, as the time to create tests takes a long time and is a really tedious process. It also provides
machine learning-based, scalable solutions, as well as complex test scenarios and test coverage. In contrast, tests that rely
on traditional methods are script-based with many labor-intensive methods, limited scalability, and adaptability.

Comparative Matrix: Al Testing vs Traditional
Testing Features

Feature Traditional Testing Al-Powered testing

Test Case Creation | Manual & time-consuming Automated & adaptive

Maintenance High effort Self-healing scripts

Test Execution Script- based Al-driven workflows

Learning Capability None Machine learning models

Scalability Limited Highly scalable

Figure 6: Comparison between Al-powered testing and traditional testing features and efficiencies

Al-generated tests are also met with trade-offs, however. Although efficiency and coverage are generally better,
the accuracy and relevance of these tests may change. AIRN Tests AIG test is effective at offering general-purpose
validation, such as showing that a specific behaviour of everyday functions is standard, or that edge cases are well-behaved.
Nonetheless, with more complex systems (i.e., ones that have complex business logic, are multi-threaded, or need to
communicate with external APIs), the Al fails to generate accurate-worthy tests. Manual testers, on the other hand, can
leverage the benefits of domain-specific checks to construct precise tests that provide them with more confidence in
identifying subtle bugs or edge cases that an Al might have missed.

The use of Al tools, such as Copilot, is also a significant expense to consider. Although the initial investment in
the first one, subscribing to the service and the charges offered as a main training, might yield considerable sums, long-
term benefits are enormous, especially regarding the time and human resources [15]. With large groups, it is possible to
offload significant portions of test creation to Al, allowing developers to focus on more important responsibilities and
potentially increasing the project schedule while decreasing expenses.

6.3 AI Limitations in Testing

The Al-generated tests also have weaknesses that cannot be overlooked despite the advantages. The generation of
exhaustive test cases is a significant challenge. Copilot is an example of an Al tool that is trained on existing code and
patterns, which makes it limited to the variety of the training data. As a result, they might find it challenging to devise tests
for the rare edge cases (or particular cases) that include unique or unusual behavior in the code.

There are also challenges where Al tools are used to generate tests in systems with complex dynamic states.
Concurrent, complex systems with transitions between states or between states and real-time communication systems (with
databases or external services) may not be adequately tested by Al-generated code [7]. In such situations, the Al can
generate generic tests that lack some crucial attributes to the behaviour or interactions of the system, and therefore impose
loopholes in test coverage.

The Al-based testing also needs to be verified and interfered with by people. Even though Copilot can quickly
create test templates, tools still need to be reviewed and corrected by developers, especially under complicated scenarios.
The process ensures the tests are relevant, well-implemented, and cover all the required conditions. The developers are
therefore crucial in ensuring that the tests created are sound and meaningful, especially in areas where Al tools may lack
adequate context or knowledge.
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6.4 Real-World Applicability

It is a potential that Al-based systems, such as GitHub Copilot, can scale in the real-world development
environment. With the development of Al tools and their increasing capabilities, they will likely be re-popular in the sector.
At its current stage, Copilot and similar applications can most effectively automate processes such as test generation, bug
detection, and code completion, saving time for developers, particularly when working with large-scale projects that have
extensive codebases. With the high dependency of testing and quality assurance in an organization, the Al-based testing
tools may differentiate between the accretion of manual work and speed up the testing, with the potential to release the
products faster and with better quality in the software.

Al applications in test generation are already being used in the real world, and numerous developers are already
starting to incorporate Copilot in their processes of code completion and unit testing. However, there are still issues when
it comes to acceptance and belief in Al-generated code. It is still feared by some developers that Al-generated tests can be
less precise and reliable than human-written tests, especially when the system in question is of vital importance to
customers, and therefore, what matters most is the accuracy of test scores. However, with an improved Al, these issues
could be reduced; thus, more Al-powered tools should be incorporated into the development pipelines.

The use of Al-based test generation tools like GitHub Copilot is taking a big leap in the process of writing software.
These tools can increase testing efficiency, minimize developers’ work in creating tests, and improve test coverage because
test creation is automated. However, human supervision is the only way to guarantee the accuracy of the tests, particularly
in specialized or straightforward conditions [3]. The evolution of AI tools has created numerous opportunities for
implementation in real-life development settings, accelerating and enhancing testing procedures, and ultimately promoting
software quality.

7. Future Considerations
7.1 Improvement of AI Algorithms

Since Al-driven technologies like GitHub Copilot are still developing, there remains much potential to expand
their test-generation features, especially in their ability to deal with problems of popular and edge-case testing. A significant
enhancement would be to incorporate more advanced machine-learning methods, including reinforcement learning, to
create a tool that can understand the peculiarities of testing significantly complex software systems more efficiently.
Currently, Copilot is competent in handling simple cases in test generation. However, it fails to perform on highly
specialized logic, such as in highly structured data or in multi-threaded programs. The addition of techniques such as deep
learning, which can handle more dynamic and heterogeneous inputs, may be beneficial for creating more complex and
accurate tests on edge cases.

The figure below demonstrates the application of generative Al in different phases of the software development
cycle, such as analysis, design, development, deployment, testing, and maintenance. It draws attention to the potential of
Al in enhancing services, such as creating test cases, working on deployment, and aiding in code generation [28]. With the
development of Al technologies, such as GitHub Copilot, the task of robust software testing will become more relevant, as
it will efficiently manage the process of coping with edge cases or multi-threaded programs in the future.

Generative Al

- Deployment

Figure 7: Generative Al applications in sofiware development, enhancing testing, design, and deployment

The other improvement area is the ability of Copilot to reason about the context of failing tests. Although the tool
can produce tests of expected behavior, it fares poorly in making predictions and managing circumstances that cause
failures, such as race conditions or non-trivial behavior between components. Copilot could compile more accurate tests in
these challenging cases by considering more sophisticated diagnostic guiding features, such as patterns of auspicious test
failures. By increasing the capacity of Copilot to receive feedback on automated bug-prediction tools, it may become more
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dynamic in adapting to codebase changes and reacting to real-time information provided by bug reports through more
intelligent and dynamic test case generation [26].

7.2 Integrating Other Al Tools

GitHub Copilot can be improved significantly with the help of prospective integration with other Al-based testing
tools to generate more tests and improve the overall quality control of software. As an example, Copilot, when regarded as
part of test-case generation tools using machine learning to estimate the presence of vulnerabilities, may yield a more
effective testing ecosystem. Such integration would allow Copilot to produce tests to cover typical use cases as well as
determine the areas within the code that are at the highest risk of failure, such as based on past activity and well-understood
trends.

Another key aspect to consider is integrating Copilot with bug-prediction tools that utilize Al to learn from past
bugs in the code and provide recommendations for potential future issues that may arise. These tools look for patterns in
the codebase, determine high-risk areas, and then develop exceptional test cases to see if high-risk areas have been
adequately covered. By combining these, Copilot can suggest a more comprehensive course of testing, providing a better
way to maximize the depth and breadth of tests. The combined method would be especially beneficial in large and complex
systems where testing techniques often fail to predict future bugs, or in situations where all potential failure cases cannot
be foreseen [4].

The combination of Copilot and automatic test-maintenance software would enhance the effectiveness of test
preservation in the code development process. Tests go out of date or become irrelevant since software undergoes frequent
upgrades. Artificial intelligence software that adapts automatically or creates new tests according to the latest reception
changes may help maintain the relevance of the produced test cases and support their reliability, thereby preventing time
wastage in manually maintaining the test cases.

7.3 Long-Term Impact on Software Development

Al-based testing solutions will have an undeniable influence on the software development process in the future,
primarily due to GitHub Copilot. With the development of Al, there are expectations that Al-based testing tools will be
used to test for more periodic and time-consuming activities (test generation, bug finding, test optimization). This can lead
to transformation in the methodology of testing practices in the longer term, which is not highly automated at present, but
is increasing the number of computerized tests that exist as the development lifecycle. Further advances in Al testing
solutions could result in fully automated continuous testing systems that can run tests against a dynamically expanding set
of Al-generated test cases against the code as it is being developed. These systems significantly reduce the time required
to search for errors and test code changes, making the development cycle more agile.

With these advancements in Al tools, one can expect the cases at the edges of the ecosystem will be better detected,
coupled with faster identification of bugs and reduced human error in the development of tests [16]. Al can extend beyond
the creation of test cases to propose code with defects that have been identified by the tests and IDD, making testing a more
integrated process. The ongoing increase in the inclusion of Al tools will facilitate the development of more innovative
CI/CD pipelines, enabling them to run complex operations beyond a simple test run [20]. These Lisa Al-enhanced pipelines
are capable of analyzing the complete pattern of developments, supplying software developers with details on performance
optimization, minimization of risks, or client programs to enhance quality, and thereby start to change the way software is
designed, analyzed, and delivered.

7.4 Broader Research Directions

Future research into the use of Al-driven test generation might explore the application of different testing tools
and different general programming languages to increase the generalizability and applicability of systems like GitHub
Copilot. Although the existing literature broadly addresses Java-based systems and frameworks, implementing Al-based
testing in other languages, such as Python, C++, or JavaScript, would open up new opportunities to test generators. Future
studies may investigate domain-specific testing to understand how Al tools can be tailored to create tests for specialized
applications [36]. For example, Al tools can be designed to automatically generate tests for embedded systems, web
applications, and mobile platforms, each with distinct challenges and testing needs. Combining automated software repair
tools with programs like Copilot would also enable them to suggest code fixes after failing tests, creating a circular
interconnection among testing, code improvement, and Al testing.

An alternative direction of research to be considered in the future is enhancing the interpretability and transparency
of Al-based test-generation tools. Despite the appearances of the existing Al models that could produce the tests, it is
unclear why a specific test was made and how it correlates with the general testing strategy. Introducing the concept of
model interpretability would allow the developers to trust the created tests and refine them promptly, which would
guarantee consistency with the requirements and expectations of the software.
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8. Conclusion

This study explored how the concept of GitHub Copilot may be developed as an Al-assisted tool in the generation
of JUnit/Mockito unit tests and how its performance would be discussed in terms of efficiency, coverage, or accuracy of
the test-generation compared to traditional methods of test generation. The study, based on a systematic survey of Al-
generated and expert-written tests, through a sample representing a selection of diverse open-source projects in Java,
revealed both the benefits and drawbacks of using Al in the software testing process. The main results show that GitHub
Copilot provides significant efficiency in terms of testing and reduces the time required to run unit tests. Copilot was faster,
on average, than manually-written ones in tests, by all of 40%, thus promising to save the development cycle, especially
with large codebases. Al-generated tests also provided widespread test coverage, often exceeding 75% of the codebase,
unlike manually developed tests, which covered only 60% of the codebase. These findings suggest that Copilot well-
addresses common scenarios and use cases; however, the tool has weaknesses in treating edge cases and complex logic
with manual testing dominance, particularly in the case of systems with complex business regulations or with multiple-
thread interactions.

Despite the impressive increase in efficiency and coverage, Al-generated tests have slightly lower accuracy than
manually authored tests. About 85% of Al-generated tests were successful on the first run, and 95% of manual tests were
as well. These results highlight how quickly and reliably tests can be generated, while also illustrating the necessity of
human control in more complex testing scenarios. The Al-based tests had a lower defect-detection capacity, detecting
approximately 80% of bugs, compared to manually written tests with a bug-detection rate of 90%. As a result, though
Copilot is excellent at replicating common mistakes, it can fail to detect additional or less obvious issues.

The current study will make a valuable contribution to the growing body of knowledge in Al applications in
software testing. It provides information on the utilization of tools based on Al-generated testing and their limitations in
practice by providing an in depth analysis of the performance of the GitHub Copilot. The paper highlights how, despite the
apparent effectiveness of Al tools like Copilot to improve the efficiency and reach level, there is still a need for human
expertise to determine the accuracy and dependability of test cases, especially when it comes to complicated software
systems. The study also identifies future opportunities to merge Al tools with supplementary testing models to strengthen
test generation and fault identification. The results contribute to the general discussion about the realization of Al in the
software sector, with the presented results having an empirical basis on their effects on productivity and the development
cycle. With the development of Al technologies, the study serves as a basis of knowledge in future research studies on Al-
guided test generation, particularly in diverse and dynamic computer programs.

It is undeniable that artificial intelligence (AI) and GitHub Copilot, in particular, are promising tools for
streamlining software testing. Test marking Robots can simplify tedious tasks of creating tests and thereby boost the time
a developer spends on creative tasks, given that software developers work faster. The study supports the concept of Al
technology to automate tedious processes in testing, expand testing coverage, and improve efficiency. The tools are
intended to have an augmentative role, not to replace human developers. For fine-tuning tests that are Al-based and
particularly complex in a specific system, the human factor, which influences the procedure, is crucial. Over the years,
tools like GitHub Copilot, which employ Al, have helped transform the software testing industry, opening new
opportunities that are bringing more independent software testing operations to software coaches for faster and more
reliable inputs between software delivered to end customers. With the ever-increasing strides in artificial intelligence
technologies and vast leaps forward, there is an excellent likelihood that there will be an immersion of their implementation
into the CI/CD pipeline and beyond the development ecosystems. The resultant benefits to the developers and software
industry, in terms of decreased development cost, reduced time-to-market, and increased software quality, will be huge.
The usage of Al devices in software testing will continue to grow as they become more capable and adaptive in treating
complex instances, which will offer businesses a rich benefit not only for the developer but for the company as well.
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