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ABSTRACT: Use of AI in code generation is able to make software creation faster, and yet due to lack of 

controls, the possibility of making severe compliance and reliability issues increases in regulated and 

safety-critical fields like finance and medicine. We describe, in this paper, a proof-carrying pipeline 

incorporating proofs presented by Large Language Model (LLM) advice into static analysis, symbolic 

execution, bounded Model checking, and policy execution mechanisms to certify changes to code before it 

is merged. The system will block unsafe pattern automatically, generation of auditor friendly evidence 

packages, and fits with Continuous Integration/Continuous Deployment (CI/CD) worklifes so that the 

impacts on developer velocity are minimal. 

We measure the method of the two production-scale repositories, one one in fintech and another one in 

healthcare, in terms of defect reduction, verification efficiency and the effect on audit preparation. The 

outcome denotes that the relative decrease in incident of defects after the merge was reduced by 73-78% 

and the success rate that is evaluated by the verification is markedly elevated when put to the test in a 

solitary mode. The preparation time of audits was decreased by more than 69%, and gift boxes of proofs 

were prepared in a structured manner and machine-defensible, therefore, decreasing manual review 

processes. Prompt refinement using the reinforcement learning also enhanced the throughput in verification 

by minimizing the number of repetitive re-verifications involved. 

The results show how AI-based development could be secure and meet standards with the integration of 

thorough formal verification. Through the use of generative AI techniques and technologies, the outlined 

pipeline solves the two-fold problem of pushing the development speed, and maintaining correctness and 

regulatory compliance and provides a scalable template of how high-stakes software engineering can be 

done in the era of generative AI. 
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I. INTRODUCTION 

The recent and blistering development of Large Language Models (LLMs) brought novel capabilities in the field of AI-

aided software development with the AI-powered model being able to write functional code based on natural language 

input and highly reducing cycle times through iterations. Commercial use Some modern development environments 

incorporate AI code assistants, whose suggestions are context-sensitive, eliminating boilerplate code work and helping 

developers to work more efficiently. Yet, with an increase in velocity, there comes a new set of challenges especially in 

regulated and safety critical sectors like those in the financial sector, healthcare sector, and automobile software systems 

where even small defects possess devastating implications on operation, economic impacts, and even legal regulations. 

The traditional quality assurance processes cannot be considered adequate to handle the intangible risks of an AI-

generated code unit testing and peer reviews. The methods may detect the flaws which function in a program, but tend to 

miss underlying violations of correctness, security vulnerability, or compliance breaches. Formal verification Formal 

verification (symbolic execution, bounded model checking (BMC), and theorem proving) offers a mathematically 

rigorous method to formal verification: verification of software to verified safety properties and verified compliance 

properties. 

These days a lot of work explores interactions between LLMs and formal verification, building hybrid pipelines that take 

advantage of AI capabilities at generation, and formal verification certificates of correctness. Code produced by AI is, in 

such systems, automatically verified prior to integrating with code where unsafe patterns are blocked, and compliance 

policies applied. In the case that validation fails, the outputs are refined iteratively using prompt refinement or 

vulnerability specific patching techniques by reinforced learning. 

The paper improves on these developments by using them as a basis to create and test a proof-carrying CI/CD pipeline 

that is suited to work in a regulated environment. Pipeline has the additional feature of ensuring that evidence of 
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compliance with regulations is documented in the form of structure against an audit. This work illustrates that safe and 

compliant AI-assisted development can be safely conducted without undermining delivery velocity by gauging its 

effectiveness in two, real-world, fields, i.e., fintech and healthcare. 

II. RELATED WORKS 

Code Generation and Verification 

Recently, Large Language Models (LLMs) have drastically changed the way software engineering is done especially in 

the field of code generation where previously a human developer would have to manually implement, test, and debug his 

solutions. LLMs have shown the promise of being able to reason directly over the code, without using a traditional 

theorem prover or Satisfiability Modulo Theories (SMT) solver, and hence a completely new category of intelligent 

development tools [1].  

As opposed to typical symbolic execution, which is limited because of its inability to scale easily, recent work like the 

one introducing the LLM-based symbolic execution has been able to perform program analysis on smaller sized models 

successfully without compromising the precision of reasoning. An example of this is AutoExe, a language-agnostic, 

lightweight tool on top of which such decomposition has been operationalized in extending access to many more 

developers who lack enterprise level hardware [1]. 

 

Even when they are said to be generative, LLMs tend to spit out code that cannot be syntactically wrong but usually 

semantically incorrect due to the difficulty of designating such text-generative space when such guarantees are 

paramount; in safety and compliance, where errors are not permissible [10]. Such deficiencies are compounded by 

regulated industries like finance and healthcare where a small code defect has an otherwise inordinate operational and 

legal impact.  

Scholars have worked on ways of formally linking these generations done via LLM with formal verification engines so 

as to mitigate this correctness gap [4][5]. Formal verification not only allows to augment trust in the quality of AI-

generated outputs, it also yields auditor-friendly and machine-checkable proofs which can be combined into compliance 

pipelines. 

Development and formal verification AI-assistance have good synergies within the space of provably correct code 

generation. Such benchmarks as VeriBench [5] have been developed to test language models on the entire software 

development lifecycle of mechanically verifiable software construction, i.e. both implementation and theorem proving, 

showing that to some extent the current LLMs remain unable to perform compilation and generation of such theorems, 

yet the hybridisation paradigm, which exploits feedback loops, can dramatically increase the success rate. This implies 

that the idea of provably correct code on a large scale is practical but there is still a lot of evolution that needs to be done 

in research. 

Formal Verification Techniques  

Formal verification has always been an ideal part of achieving software reliability in safety-critical systems, more so, 

where failure may lead to the catastrophic results [6]. The verification methods used in the conventional work-flow that 
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are placed as exhaustive include, simulation and bounded model checking (BMC) that demonstrate correctness of the 

program.  

Although simulation provides a practical rate of scale, it calls for a tremendous execution time, and formal verification 

may require a large number of resources as to be impractical [6]. A combination of the two methods, to the extent that 

they are mutually complementary, has a good potential to be a compromise between completeness and efficiency. 

The recent advances make formal verification accessible to the new AI age and combine it with LLM-powered processes. 

ESBMC-AI is an example of this, which integrates BMC to find vulnerabilities, automatically produce counterexamples 

and provide structural error contexts to an LLM as input to repair the errors automatically [3]. The fixed code is then re-

validated and this provides positive feedback of accuracy which can be ideally used in CI/CD integration in a regulated 

industry. This method has proven to be very accurate in fixing typical security weaknesses like a buffer overflow and null 

pointer dereferences [8] on large vulnerability-marked datasets such as FormAI [8]. 

 

Symbolic execution Automated accuracy testing techniques such as ACCA can be based on symbolic execution, to 

compare generated code produced by an AI with a secure reference implementation. The low-latency complete 

automation of the evaluation process at ACCA is highly correlated with expert human judgment (Pearson r= 0.84), which 

suggests that correctness evaluation via symbolic execution can perform at industrial scale workloads without 

compromising the level of accuracy. What is more, its high rate of per-snippet analysis (~0.17 seconds) will allow near 

real-time validation a necessity in high-frequency code generation environment. 

Formal methods of verification have also grown to be developed to higher-level proof generation. Recent work [4] 

considerations of how the LLMs can be utilised in generating formal language proofs, such as Isabelle, with heuristics 

and theorem provers. This enables AI systems to generate not just code that is correct, but verifiable formal reasoning, 

and opens the way toward strong compliance reporting. These developments are in line with industry demands of so-

called proof-carrying code, software that comes with internally verifiable guarantees of correctness. 

Vulnerability Detection 

The importance of intense verification increases in areas where high ideals of safety and compliance are in force like in 

the automotive (ISO 26262), healthcare (HIPAA) and financial systems ( PCI DSS). Under such settings, vulnerability 

identification and autonomous patching cannot just focus on correctness of functionality, but have to meet policy 

limitations [6], [9]. In light of the fact that the systems of the modern world are complex and potentially prone to a wide 

range of vulnerabilities, future-ready verification pipelines will need to be built to work efficiently on heterogeneous 

architectures and largely AI-generated codebases [9]. 

Datasets such as FormAI [8] are now becoming a necessity with respect to further research related to vulnerability repair 

with the assistance of AI. Form AI knows how to create programs containing more than 112,000 C programs with inbuilt 

classifications of vulnerabilities. Thus, offering a stringent training and assessment field to AI verification systems. More 

importantly, the vulnerabilities are associated with Common Weakness Enumeration (CWE) identifiers so that it is 

possible to see exact compliance mapping. Usage of formal verifications results produced by ESBMC assures that the 
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labels of the defects are using mathematically sound counterexamples and not heuristic detection, which eradicates false 

positives as well. 

In the case of regulated settings, the collaboration between AI assistance and human control is shifting as well to the 

hybrid’s development models. Vibe coding operates at conversational levels in collaboration with human experts [7], 

whereas agentic coding aims at making the code autonomously repairable and verify-able. With hybrid architectures, AI 

agents can potentially act autonomously to perform symbolic execution, BMC verification, and generation of patches and 

only intervene on ambiguous or policy sensitive situations. Such a hybrid paradigm can radically shorten audit cycles, 

since patches and compliance documentation will be automatically generated along with code itself that is verifiable. 

The security roadmap proposed in [9] also supports the need to make verification systems ready to face such threats of 

the future, such as vulnerabilities deeply embedded into the system logic or created by the involvement of complex 

interactions in the AI-generated components. The paper aligns with scale and ecosystem-wide vulnerability analysis 

architectures that can bring formal verification to the larger software supply chain and end-to-end assurance and 

reliability. 

Proof-Carrying Pipelines 

Combining AI-assisted coding with formally verifiable code scales to workflows has led to what are known as proof-

carrying pipelines continuous integration systems that prevent risky merges and automatically generate compliance-ready 

audit evidence. These pipelines would work by intercepting each code change (diff) produced by AI, running static and 

symbolic scan, applying policy rules and ensuring that the code does not create unsafe patterns prior to coming to the 

production environment. The pipelines can be used to repair code and discover new, safe novel code, whilst keeping up 

developer speed by leveraging automated theorem proving [4], bounded model checking [3], symbolic execution [1][2] 

and guided repair using reinforcement learning [10]. 

One of the examples of reinforcement learning in this process is the PREFACE framework [10]. Through prompt 

modification to steer LLMs toward verification success because PREFACE avoids costly fine-tuning, the suite is 

applicable across many future LLM architectures. Its adaptability is vital in attaining long term scaling conditions that 

may be heterogeneous, different code bases, and compliance terms should be treated with distinct verification policies. 

According to a compliance point of view, pipeline proof carries two significant benefits namely they offer verifiable 

evidence of conformance to auditors and it also ensures that changes that do not adhere to a policy are not introduced into 

a production environment. Such approaches have been proven empirically to achieve measurable reductions in defect 

rates and dramatic increases in the preparation time of the audit even in regulated environments where operational risks 

are directly taken into consideration by the deployment of AI-enabled code. 

IV. RESULTS 

Formal Verification Integration 

The principal result of a study of our proof-carrying pipeline was that defect rates shrank to a very small degree once 

merge in both the fintech and healthcare repositories. The system inserted notifications of unsafe code patterns with the 

integration of LLM based code suggestion into static analysis, symbolic execution, and bounded model checking, 

therefore, notified of unsafe code patterns even before they were integrated to the main branch. 

With empirical measurements over the duration of a 12-week deployment released a 4.82 to 1.06% decrease in the defect 

rate in the fintech codebase and 5.37 to 1.42% decrease in the defect rate in the healthcare codebase. Such a decline was 

consistent in both categories of security vulnerability (SGs, e.g. buffer overflows, improper input validation) and 

functional correctness defects. 

Table 1. Defect Reduction Statistics 

Domain Baseline Defect Post-Integration Defect  Relative Reduction 

Fintech 4.82 1.06 78.0 

Healthcare 5.37 1.42 73.6 
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Besides minimizing defects in raw products, time was reduced significantly in detecting defects. With previous 

workflows, vulnerabilities added in feature branches might not be discovered several days later; with the pipeline the 

latency was less than 12 minutes per commit. 

 

An important lesson could be learned through symbolic execution logs whereby most of the AI-recommended patches 

succeeded during unit tests but failed on formal verification. This further confirms the reason why proof based checking 

must be maintained rather than behavioural test testing. 

________________________________________________________________________________________________ 

1. # Symbolic execution run on modified diff 

2. esbmc ai_generated_code.c --unwind 8 --no-bounds-check 

3. # Output: Assertion violated: buffer overflow at line 142 

________________________________________________________________________________________________ 

Verification Success Rates  

Among the main objectives was to gauge the level of effectiveness with which the pipeline would be able to perform 

real-time validation of code generated by AI without exorbitant CI/CD delays. The success rate of the verification 

performed by the pipeline was measured in three modes including: using static analysis only, symbolic execution only, 

and the fully integrated proof-carrying pipeline. 

Table 2. Verification Success Rates 

Verification Method Success Rate Verification Time 

Static Analysis 68.4 3.5 

Symbolic Execution 74.2 9.8 

Integrated Pipeline 91.7 12.6 

 

The collectively reinforced pipeline showed better results when compared to the isolated techniques, noteworthy the 

difference in the success rate in 17.5%, when compared with the case of static analysis alone. The verification process 

took ~9 seconds longer than the static analysis, which was also still in the range of enterprises acceptable latency level of 

~15 sec or less per commit (latENTs), which allows using it with the CI/CD processes. 
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Further improvement of the verification process was achieved by prompt refinement based on reinforcement learning 

(based on PREFACE [10]) which was performed in 21% of the failing verification cases. This lowered average 

verification iterations to 1.9 number, as compared to 3.2 which is a great improvement in throughput. 

________________________________________________________________________________________________ 

1. for attempt in range(max_attempts): 

2.     result = verify_code(candidate_code) 

3.     if result.passed: 

4.         break 

5.     candidate_code = rl_agent.refine(candidate_code, result.errors) 

________________________________________________________________________________________________ 

Compliance Audit  

The testament of compliance is important in regulated industries as is the elimination of defects. One of the deliverables 

of the pipeline was evidence packages that were friendly to the auditors; they were generated automatically each time that 

a commit passed the verification. Like a number of software bundles included: 

1. Proof logs 

2. CWE-mapped vulnerability 

3. Policy rule  

4. Code diffs  

This automation had an immediate effect in the preparation times of auditing. In the case of fintech repository, the 

average audit preparation time during quarterly review was reduced by about 70% (~21 hours to 6.5 hours); and, in 

healthcare by approximately 75% (~28 hours to 7.2 hours). 

Table 3. Audit Preparation  

Domain Baseline Audit  Post-Pipeline Time Saved 

Fintech 21.0 6.5 69.0 

Healthcare 28.0 7.2 74.3 
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Auditors stated that they could reduce the manual effort of reviewing the evidence by 36 percent, as a result of having 

structured, machine-verifiable proof packages. 

 

________________________________________________________________________________________________ 

1. { 

2.   "commit_id": "9f2c3e", 

3.   "verification_passed": true, 

4.   "cwe_free": ["CWE-120", "CWE-476"], 

5.   "proof_log": "proofs/9f2c3e.log", 

6.   "policy_status": "Compliant" 

7. } 

________________________________________________________________________________________________ 

Limitations 

The variations in domains of verification patterns manifested itself in the deployment stage: 

1. The Fintech systems did not usually pass the initial checks by the numeric precision problem and arithmetic 

overflows was common, especially in the interest calculation unit. Before merge, the BMC module identified 

84% of such cases, which allows them to be corrected in a targeted and timely manner as they go through an AI 

assistant. 

2. Healthcare systems also faced downfalls of adhering to policy of data privacy (e.g. inappropriate recording of 

PHI in debug statements). Statics were more successful than symbolics at detecting these policy violations, and 

this is also evidence in Favor of multi technique verification. 

3. In both regions, there were multipurpose modification that came in as more of a verification problem. The initial 

verification success rate was 13% lower in commits that modified >4 functions than in smaller commits; the 

difference was mainly caused by the attempt to address greater complexity in symbolic path coverage. 

Table 4. Domain-Specific Failure  

Domain Failure Type Failures Caught  

Fintech Arithmetic Overflow 84% 

Healthcare Policy Compliance  79% 
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These successes were clouded by the finding of a limitation of resource use when symbolic execution is scaled up to very 

large diffs (>500 lines changed). Although the RL-based optimization enabled to decrease the number of retrys, 

processing durations in such exceptional instances took more than 30 seconds, which is a bit more than the advised 

CI/CD latency ranges. 

 

V. RECOMMENDATIONS 

The results of the current research contribute to the idea that AI-based code production can be safely used in regulated 

conditions in the context of a strict formal verification. Nonetheless, implementing such system involves planning, 

alignment, and optimization of the organization. The recommendations as follows, should be considered by any 

organization pursuing the same or embarking to improve their strategies: 

1. Embed Verification Early  

Formal verification cannot be viewed as a verification after the development. Use of symbolic execution, bounded model 

checking, policy enforcement in the initial stages of the development process make sure that unsafe code will be detected 

at the time when it has no technical debt. Many AI-aided processes allow verification to be run on the fly as code is being 

generated by the LLM, giving a developer real-time feedback and minimizing the rework loop. 

2. PCC Framework 

With a proof-carrying architecture, changing the code would also come with safety and policy evidence such that anyone 

can easily verify that the code changes not violate any safety and policy constraints. This can make regulators review the 

data much easier and eliminates large overheads at manpower to do verification on data. To be able to access such proofs 

in cross-team and cross-audit conditions, the organizations should standardize the formatting and warehousing of the 

artifacts. 

3. Reinforcement Learning  

The failures that occur in formal verification should only be regarded as a possibility to improve the effectiveness of the 

prompts used in AI models and verification strategies. Automatic correction patterns can be implemented by 

reinforcement learning as corrections to prompt structures in instances of failure of verification. This is because later on, 

when the system is already deployed within the organization, it will be continuously self-improving, matching the 

changing codebase and regulatory framework of the respective organization. 

4. Verification Rigor  

Making safety more complete may involve introducing excessive restrictions, as this is likely to slow down development. 

To verify code depth organizations should calibrate depth on basis of code criticality. As an example, healthcare or 

financial transaction processing mission-critical modules ought to have full symbolic path coverage, whereas less-risk UI 
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pieces could be checked lightly using static analysis. This risk-based strategy is the most efficient in terms of safety and 

delivery speed. 

5. Scalable Verification  

Symbolic execution and model checking are scalable and can be both time-and-resource-demanding when large-scale 

repositories are involved. By investing in distributed verification clusters, parallelized path exploration and incremental 

analysis techniques, the verification process can be made efficient despite increased complexity of the projects. The use 

of cloud-based verification environment can also achieve this to be scalable and resilient. 

6. Compliance-First  

Technology is not enough to ensure safety; developer mindset is another source of equal importance. Training should be 

done to organizations on verification tools, requirements of regulatory bodies, and risks of using AI assisted coding. 

Setting up KPIs where any adherence to compliance would be met with reward and coupled with speed of delivery would 

ensure that the engineering focus was in line to meet organizational goals. 

7. Multi-Agent  

Verification pipelines are likely to need to be adjusted as AI-assisted development progresses to multi-agent systems, in 

which distinct AI agents would be tasked with coding, testing, and deployment. This will go on to make sure that the 

whole environment of the AI landscape will fall within the safety and compliance context and not single entities. 

8. Monitoring 

Even the validated code can face unexpected problems in production state because of environment-specific requests or 

some fluctuation to the rules of compliance. The solution to restoring the safety net would be to implement runtime 

verification, anomaly detections and automatic roll back mechanisms that will make sure that the production systems are 

safe and not in violation. 

VI. CONCLUSION 

Formal verification in software development with AI assistance is a major development to be used in high-stakes areas. 

This research has shown that using LLM-produced code in conjunction with static analysis, symbolic execution, and 

constrained model checking in a that-carries-proof CI/CD pipeline, defect rates can be slashed, verification performance 

driven up, and compliance audits spaced down. 

Its empirical findings are powerful: Defect rates in fintech and healthcare repositories have decreased by more than 70% 

whereas verification success rates could go up to 17.5% in comparison with isolated approaches and the preparation time 

of the audits declined over two-thirds. The consolidation of these gains came at a time when CI/CD latency was 

acceptable despite the average per-commit verification being less than 15 seconds. Prompt refinement based on 

reinforcement learning also improved throughput further, and made correction of verification failures automatically with 

little developer intervention. 

In addition to defect elimination, the automated process of the pipeline to create evidence packages in a structured nested 

that was auditor friendly lessened the need to manually review evidence packages. This addresses the operational 

overhead of compliance / regulated industries as needed where the correctness of operations can be as fundamental as 

traceability of evidence. The strategy also encourages scalability of various verification methods where security 

vulnerability as well as policy violations can be identified before deploying into production. 

Challenges remain. Resource bottlenecks with scaling the symbolic execution to very large code diffs still have complex 

multi-function commits typically with a lower verification rate. Future work should explore the field of distributed 

verification, selective path exploration and increased clustering of the field of agentic coding paradigms in order to solve 

these constraints. 

This study confirms that development in an AI-assisted manner to be compliant and safe is not merely a possibility but is 

also practically useful. By automating formal verification of the organizations, it is possible to realize the productivity 

gains of generative AI and be able to ensure that every code change in the organizations excels in terms of correctness 

and compliance. This piece sets the stage on the development of the next-generation pipelines that combine algorithmic 

creativity with mathematical rigor so as to achieve reliable software in most pressing spheres. 
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