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Abstract 

The faster and more frequently used CI/CD pipelines to deliver software have led to an increase in 

vulnerabilities due to a lack of pace related to traditional manual triaging efforts. This report shows us an 

expandable framework combining both static and dynamic analysis runs, compound risk-scoring, and 

automated patch orchestration to simplify vulnerability management in CI/CD pipelines. It uses modular 

microservices that are deployed through Kubernetes and uses pre-merge hooks, post-build pipelines, and a 

message bus to isolate the scanners, scoring engines, and orchestration elements. Risk scoring complements 

CVSS values with up-time threat intelligence, asset criticality, and employs natural language inference in a 

machine-learned layer of prioritization to further improve urgency assessment. Patch implantation strategies 

integrate the canary and blue-green strategies with rollback to deliver resilience in case of failures. Well, 

empirical testing on a microservices-based application comprising 50 injected vulnerabilities showed that 

median triage time was reduced by 50% (120 to 60 minutes), 30% more vulnerabilities were patched (58% 

to 88%), and 20% fewer were found to be false positives. Rollback events were reduced to less than 3% 

compared to 5% in the manual workflow, and resource overhead was not within enterprise quotas. Engaging 

engineering and security teams in qualitative surveys found that the mental burden and satisfaction decreased, 

and 95% of them wanted to adopt it. The framework facilitates the multi-cloud and hybrid setups, improved 

integration of incident response, and explainable ML models in compliance audits. The following areas of 

development involve adaptive feedback-driven risk models, large-scale field tests, and ML explainability as 

a means of venerating self-healing CI/CD pipelines that can subordinate security automation to the needs of 

an organization. 

Keywords; CI/CD security automation, Composite risk scoring, automated vulnerability triage, Risk-based 

patch management, ML-driven prioritization and explainability. 

1. Introduction 

CI/CD procedures have altered software delivery to deliver software quickly to production by automating the 

build, testing, and release processes, which allows teams to fold their code updates regularly and shorten delivery. Firms 

in various industries, whether startups or global organizations, have come to harness the power of CI/CD pipelines to stay 

competitive, increase development and operations collaboration, and act swiftly on any customer feedback. But with the 

increased complexity of pipelines, the risk of pipeline security increases. Third-party dependencies and auto scans may 

import vulnerabilities quickly, increasing the attack surface area. Central to the issue is the need to integrate security 

controls without compromising deployment agility, particularly in line with the draconian regulatory environments, as in 

the case of GDPR, HIPAA, and PCI-DSS. Therefore, it has been necessary to have modern DevOps teams that implement 

mechanisms that can enable them to incorporate security, without exception, into the CI/CD processes to support innovation 

and compliance. Despite the development of automated scanning tools, which span across static application security testing 

(SAST), dynamic application security testing (DAST), and software composition analysis (SCA), a significant number of 

organizations continue to use manual methods of validation and prioritization of the findings. The growing pipelines put 

security teams in a position of facing thousands of alerts in a day, where each alert must be analyzed in context to determine 

its exploitability and criticality to the business. This manual triage creates bottlenecks that slow down remediation, 

undermine developer productivity, and extend the period that high-risk vulnerabilities are exposed to attack. Regular 
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releases and ongoing dependency updates result in patch fatigue: teams are being burned out by the sheer number of patches 

needed, the ensuing alert fatigue, and avoidably severe security vulnerabilities becoming unaddressed. This wastage 

negates a continuous spirit of CI/CD and threatens the integrity of the applications. 

The strategic solution presented by risk-based prioritization is the concentration of scarce security resources on 

the most threatening security weaknesses that can disrupt business operations and data confidentiality. This is not an equal 

treatment of all findings, but it assesses the exploitability of issues and sensitivity of affected resources, and considers 

external threat intelligence. Asset criticality, historical exploit patterns, and exposure to public networks are some examples 

of what contribute to composite risk scores, which can be used to prioritize remediation activity by teams. Integrating risk 

scoring into the CI/CD pipelines streamlines decision-making and also justifies patching schedules with audit-ready 

evidence to facilitate compliance and governance goals. Risk-based prioritization creates a proactive, but not slow, 

defensive stance by aligning security actions with the organization’s priorities. The proposed research aims to connect the 

dots between the fast deployment and high-security levels by creating an extensible automation framework that 

incorporates risk-based prioritization into CI/CD pipelines. The initial objective is to develop a composite risk scoring 

system that combines the outcomes of the static and dynamic analysis with asset criticality metadata and live threat feeds. 

A scalable orchestration layer, which is compatible with the most common CI/CD platforms (Jenkins, GitLab CI/CD, 

GitHub Actions), will be deployed with minimal performance overhead. The research will assess the effectiveness of the 

framework using enterprise case studies by calculating key metrics such as mean time to remediation (MTTR), 

vulnerability recurrence rates, and developer satisfaction. The plan is to measure the security enhancement through 

controlled experiments and generate suggestions on how it can easily fit into the current DevOps toolchains. 

This article reads as follows. In chapter 2, the related work and current CI/CD security practices are surveyed, 

from which gaps in triage automation and prioritization are identified. In chapter 3, the architecture and implementation of 

our risk-based automation system, model training, threat intelligence, and pipeline plugins were explained. In chapter 4, 

the empirical analysis is represented by chapter 2, and case study findings are examined, with performance standards and 

cut-offs analyzed. Chapter 5 explains limitations, possible attack vectors, and how the industry should adopt the 

recommendation. As part of the conclusion in chapter 6, they summarize the contributions, provide best practices, and 

future research directions about continuous learning and adaptive risk modelling. Additional materials, such as a 

configuration template, reference links to code, and other extended data tables, are posted in the appendix to facilitate 

reproducibility and adoption. 

2. Literature Review 

This literature review looks at the state of vulnerability scanners in DevSecOps, comparing and contrasting manual 

and automated triage, examining sophisticated risk-scoring models, reviewing precursor work on patch-management 

orchestration, and identifying key gaps that drive integrated and scalable systems. 

2.1. Existing Vulnerability Scanners in DevSecOps (SAST, DAST, SCA) 

The Static Application Security Testing (SAST) tools analyze the source code or compiled artifacts without 

executing the application. Using pattern matching, control-flow, and data-flow analysis along with abstract syntax tree 

inspections, current SAST engines can detect common code mistakes, including injection vulnerabilities, unsafe 

cryptographic protocol usage, and ineffective input validation (36). Market-leading commercial and open-source products 

use semantic analysis to minimize false positives and to support various programming languages. Nonetheless, SAST 

performance depends on language and framework: highly-typed languages such as Java or C# are likely to be more accurate 

in detection and better results compared to the dynamic ones (such as JavaScript or Python) due to issues with reflection, 

dynamic imports, and metaprogramming-like features. SAST tools may fall short in the ability to model complex 

application logic and handwritten libraries effectively. It becomes a requirement that security staff design a ruleset and 

fine-tune severities based on projects. 

Dynamic Application Security Testing (DAST) methods engage the vulnerable applications via the running 

instances of the application. Tools generate attack traffic--dropping HTTP requests that contain malicious payloads to test 

a program’s run-time actions and uncover configuration mistakes, authentication bypass, and business logic exploits. 

DAST scanners excel at discovering problems beyond the realm of static analysis, such as misconfigured web servers and 

poor session management, as well as post-runtime dependencies. The latter published evolutions incorporate DAST into 

continuous integration pipelines by spinning up containerized instances of applications that can be interrogated as 
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temporary targets, automating crawl-and-attack sequences, and storing results in machine-friendly formats. DAST brings 

with it further resource costs, can be time-consuming against applications with a large attack surface, and will often need 

credentialed access or advanced session control to succeed against multi-factor authentication or single-sign-on, making 

comprehensive coverage testing difficult in an automated CI/CD pipeline. 

Software Composition Analysis (SCA) is concerned with known vulnerabilities in open-source and third-party 

dependencies. SCA solutions compare lists of dependencies with maintained databases of vulnerabilities using parsing 

package manifests, lock files, or even binary metadata (7). The tools indicate dependency with CVEs published, 

remediation advice, and in many cases, offer version upgrades. More powerful implementations of SCA are available, 

which add reachability analysis or lightweight binary instrumentation to discard vulnerabilities in code paths that are never 

reached, potentially decreasing alert noise. Automatic checking during merging enables organizations to have policies that 

prevent builds from proceeding when high dependency vulnerabilities are found. SCA is strong on scope. It can find any 

known vulnerability in any dependency tree. It does lack detailed run-time contextual understanding of the dependency 

tree in terms of how a given dependency or implementation is used, or not used, within the application, and thus, as a result, 

unused or dead code paths can often be reported. 

All the ways listed here can be classified under the term loosely coupled modules, since, although many 

DevSecOps platform solutions now provide SAST, DAST, and SCA in integrated dashboards, they are still likely to remain 

loosely coupled. Scanners run on separate schedules, such as pre-commit, nightly builds, or pull-request triggers, and 

generate isolated report outputs. Consequently, this leads to security teams having to work hard to correlate results between 

security tools, match up repeated results, and eliminate duplicate alerts. The absence of a centralized orchestration layer 

implies that vulnerability data is usually confined to its silos without holistic visibility, which creates challenges in 

downstream remediation decisions. 

2.2. Manual vs. Automated Triage Workflows 

An important concept, vulnerability triage converts the raw scanner results into actionable items in order of 

importance. During manual workflows, the security analyst reads every finding, reads the vulnerability, searches the exploit 

database, and checks the criticality of the asset. Analysts will look into the ease of attack, adverse effect on operations, and 

the complexity of removal before assigning a level of priority or creating tickets for development groups. The complexity 

of the finding may require between 15 minutes and more than 1 hour of manual triage. Manual triage is a bottleneck in a 

high-velocity CI/CD pipeline with hundreds or thousands of alerts a day triaged manually: the mean time to triage is usually 

much longer than the organizational release cycle, resulting in stagnated backlog queues and delayed fixes. 

Automated triage pipelines use rules and heuristics-based filters to label an initial severity or to auto-dismiss 

findings that are considered low risk. As an example, computerized rules could automatically discard informational SAST 

vulnerabilities in non-critical modules or ramp DAST results up when they point to publicly exposed endpoints. 

Vulnerability management frameworks have APIs that consume scan data and run user-built tag-and-priority rules that 

allow pre-filtered output. More recently, prototypes based on machine learning classifiers that attempt to predict analyst 

decisions, given historical triage data, have been studied. These ML models are provided with such features as vulnerability 

metadata, code complexity, and previous resolution schedules. In benchmark tests, ML-driven triages display agreement 

rates that are comparable to those of human analysts (17). But in practice, concept drift, lack of labeled training data, and 

opaqueness of model explanations are issues in real-world deployments and make it hard to audit and comply with business 

needs. Its existing industry configuration is a hybrid workflow where automated filters can clear the bottom level of non-

actionable alerts to decrease triage by an estimated two-thirds, leaving human analysts to concentrate on critical or unclear 

results. It is the hybrid model that can mix between speed and situational judgment that allows the teams to fulfill fast 

release requirements without compromising on thoroughness. 
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Figure 1: Hybrid triage using automated filtering and human analysis expedites vulnerability resolution 

As shown in the figure above, vulnerability triage pipelines are a mix of manual analysis through which security 

analysts methodically evaluate each finding via reading description of the vulnerability, searching exploit databases, and 

evaluating asset criticality, ease of attack, impact, and complexity of remediating each finding, and automated filtering 

pipelines that apply heuristics and machine-learning classifiers to pre-label the severity of vulnerabilities, auto-dismiss low 

severity findings, and raise critical or ambiguous alerts. In this hybrid solution, the majority of the noise that cannot be 

acted upon is offloaded--potentially to the tune of two-thirds of a manual triage workload--but human experts can now dial 

in on high-priority problems, effectively matching vulnerability management to the Agile velocity of CI/CD release. 

2.3. Risk-Scoring Models (CVSS Extensions, Business-Context Weighting) 

The Common Vulnerability Scoring System offers standardized severity rating metrics that score base ratings on 

exploitable and impact characteristics. Base scores are, however, not applicable in environment-specific or business-critical 

issues. Organizations mitigate this by expanding severity scoring to include environmental metrics that signify the value 

of assets, regulatory restrictions, and exposure level, and temporal metrics that measure real-time exploit trends. Ecological 

and temporal scoring components are defined as optional extensions to the CVSS, but many current implementations are 

ad hoc and inconsistent across teams (32).  

Risk models in the business context further narrow scores by using numeric weights dependent on asset criticality, 

i.e., risk per hour of service disruption, and threat intelligence values such as published exploits, dark-web observations, 

or an exploit forecasting system. Composite risk formulas combine base severity with asset and threat weights, producing 

a risk assessment, prioritized according to the organizational priorities. This strategy will make impactful vulnerabilities in 

the key systems come to the forefront of the remediation lists, and the low-probability problems with non-critical assets 

will be addressed with a lower sense of urgency. 

Risk-scoring research is also emerging to describe machine learning methods that determine the likelihood of a 

real-world exploitation. The training of the models is based on features extracted from vulnerability metadata, exploit 

databases, and/or historical results of remediation to estimate the likelihood of an exploitation of a vulnerability over a 

given period. First applications indicate that they have good predictive results, although they must be retrained whenever 

new exploit information is discovered to keep the model current. Beyond that, financial and reputational risk models 

integrate statistical predictions with business metrics, which allow the security team to set remediation activities to mitigate 

expected losses and present executable risk dashboards. Risk-scoring models continue to become more sophisticated, but 

are not yet widely deployed into automated DevSecOps pipelines (27). The majority of organizations recalculate contextual 

severity metrics offline, produce static reports, and use manual processes to absorb the scores into a ticketing system. 

Pipeline continuity, with scanning results passed into moving scoring engines and then into triage and patch processes, is 

still a dream. 

 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

________________________________________________________________________________________
1789

Vol: 2025 | Iss: 02 | 2025
 

2.4. Prior Work on Patch-Management Orchestration (Ansible, Terraform) 

Patch-management orchestration automates infrastructure and application layer updates and remediation of 

vulnerable components. Configuration management software, like Ansible, Chef, and Puppet, is especially suited to 

enforcing desired-state configurations and package updates on servers. As an example, an Ansible playbook may execute 

commands of a package manager, orchestrate service restarts, and ensure version constraints. The kind of playbooks are 

usually focused on operating-system-based patches, and not application-level dependency corrections. Some platforms 

known as Infrastructure as Code, such as Terraform, can provision cloud resources declaratively, but lack built-in 

vulnerability remediation features (34). Extensions and communal modules fill this gap, applying Terraform to configure 

cloud vendor patch foundation or to trigger systems the board API to instigate virtual machine instance update. 

Orchestrating across cross-heterogeneous environments through containers, serverless functions, and on-premise systems 

is usually less atomized and, therefore, requires custom scripting, which adds maintenance and scaling complexity. 

Prototypes of research focus on end-to-end pipelines between vulnerability detection and automatic patch 

deployment. Another solution is to include dependency scanning tools in CI pipelines, where a vulnerability in a high-risk 

library can be used to trigger a code update Pull Request to bump the offending dependency, followed by automated tests 

and a merge if they pass. More phases roll out the newer artifact to staging environments, with testing (smoke tests) and 

then a slow deployment. Bot-powered frameworks go further and open remediation pull requests automatically, label them, 

and show progress on merges(2). Enterprise patch-management products, like commercial compliance scanning tools, 

provide central awareness and automated scheduling of patching, but decouple detection and remediation. Compliance 

reports are reviewed manually by the operators, and patch cycles are started at an identified maintenance window. Emergent 

DevSecOps toolchains are trying to remove this divide by including the orchestration of patches with release pipelines. 

But cross-tool interoperability is an obstacle, and ensuring audit trails and rollback plans in case of patch failures is also a 

challenge. 

 

Figure 2: Developer workstation powers end-to-end DevSecOps pipeline from build to access 

The developer/DevOps administrator workstation as in Figure 2 above, is exposed to every stage of the 

DevSecOps pipeline, and thus exposing to build products stage, where they can download and explore open-source 

scanners, access Git repos/deployments, write code, invoke CI/CD tools and artifact repositories; in Test/Provision stage 

and provisions where they can write or execute automated vulnerability scans, bump pull requests on dependencies, “smoke 

test” or provision scripts; in Run/Operate mapping where they manage containers, hybrid and cloud workloads and staging 

workloads and Such integrated ecosystem allows to discover vulnerabilities end-to-end, generate patch pull request, merge, 

and roll out in progress with maintaining audit trails and rollback considerations. CI dependency scanning integration 

allows the automated creation of version-bump pull requests, smoke testing, and conditional merges to staging and 

production, as a result of reported (barring resourcing and policy issues) high-risk library vulnerabilities. 

2.5. Gaps: Lack of Integrated Frameworks, Limited Scale Evaluations 

There remain serious gaps even with an advanced case of vulnerability scanning, triage automation, risk scoring, 

and patch orchestration. To begin with, toolchain fragmentation compels an organization to deploy a collection of different 

scanners, scoring engines, and deployment scripts, increasing the complexity of integration and incompatibility of data 

models. The vast majority of academic prototypes are of small scale, which makes their performance, reliability, and 

throughput questionable when hundreds of scan reports or thousands of endpoints need to be processed every day. The 

time delay between detection and remediation introduces feedback delay; fixed risk scores and planned patch cycles do not 
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give a real-time closure to vulnerability cycles (8). Automation in triage is not easily explained in terms of precision. The 

rule-based filters have the disadvantage of incorrectly distinguishing new threats, and machine learning models do not 

provide sufficient clarity that could be used in compliance audits. Organizations that do not have integrated frameworks to 

capture the rationales behind decisions and provide human oversight of critical points are at risk of noncompliance when 

it comes to regulators that stipulate documented procedures of security governance. 

End-to-end automated frameworks have limited longitudinal studies on production-scale evaluations. Other 

metrics like mean time to remediation, patch success rates, developer throughput, and security outcome improvements are 

seldom published in a combined set, which prevents the evidence-based decision it should support. A less explored research 

area has been adaptive learning loops that utilize the effects of remediation to make future prioritization and patching 

decisions more effective (11). Achieving the proper continuous, scalable, and context-aware vulnerability management 

requires a unified framework, such that scanning, dynamic risk scoring, automated triage/automation, and orchestrated 

remediation exist underneath a centralized control plane. Scalable operational capability, real-time feedback, the ability to 

be audited, and adaptive learning will enable DevSecOps to move to proactive and business-aligned security. 

3. Methods and Techniques 

This section explains how the processes of an automated risk-based vulnerability management program were 

designed and implemented into CI/CD pipelines. It discusses system architecture, vulnerability detection enforcement, 

risk-scoring methods, patch-management orchestration, and implementation details, and how each element interacts with 

the rest to provide real-time, scalable security controls. 

3.1. System Architecture 

The structure of the proposed system is described as a modular microservices architecture that is seamlessly 

integrated with such a CI/CD platform. Pre-merge hooks and post-build workflows are critical pipeline stages where 

integration points are specified. Pre-merge hooks apply lightweight static analyzers to feature branches and reject a pull 

request when serious issues are found. Post-build workflows initiate full scans - dynamic analysis, container analysis, and 

more - against artifacts built and publish the results to an event bus, centralizing the results (13). The distributed message 

bus supports both Kafka topics and webhook endpoints. Kafka is used in high-throughput scenarios where ordering 

guarantees and partitioned consumption are very important. The eventual-consistency model presented by Kafka can be 

applied to the distribution of scan results since the results can be consumed by multiple services, including risk-scoring 

engines and dashboard services, at any given time without blocking on each other (4)Webhooks add to Kafka the ability 

to send out push-based notifications to external tools or chatops channels to ensure low-latency alerting of high-priority 

vulnerabilities. Collectively, these mechanisms decouple risk-scoring and remediation consumers from scanner producers, 

encouraging scalability and fault isolation within a heterogeneous pipeline of stages. 

The service discovery and configuration management are processed through a lightweight orchestration layer 

constructed on top of Kubernetes. The scanners, triage engine, risk-scoring module, and patch orchestrator microservices 

are deployed as isolated containers that have resource quotas and horizontal pod autoscaling. Configuration changes (new 

scanners, scoring parameters, etc) can be replicated through ConfigMaps with minimal downtime and with consistency 

between staging and production environments. This architecture encourages high availability and rolling upgrades and is 

also in line with the demands of modern DevSecOps. 

Table 1: Overview of Methods and Techniques for Automating Risk-Based Vulnerability Management in CI/CD Pipelines 

Element Description Techniques Tools/Technologies Key Benefits 

System 

Architecture 

Modular microservices 

architecture integrated with 

CI/CD. Includes pre-merge 

hooks, post-build 

workflows, and Kafka for 

message distribution. 

Pre-merge hooks, post-

build workflows, Kafka 

topics, event bus, 

ConfigMaps, 

Kubernetes 

orchestration. 

Kafka, Kubernetes, 

ConfigMaps, 

microservices, GitHub 

Actions, Jenkins. 

Scalable, fault-

isolated pipeline 

with seamless 

integration. 
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Element Description Techniques Tools/Technologies Key Benefits 

Vulnerability 

Detection 

Polyglot toolchain 

including static analyzers, 

container scanners, and 

dependency checkers. 

Parallel execution with Git 

diffs and caching. 

Static analysis, 

container scanning, 

dependency checks, 

parallel execution, file-

level caching, Git diffs. 

Static analyzers, container 

scanners, KersKers, Git 

diffs, caching. 

Parallel scans and 

optimizations for 

rapid vulnerability 

detection. 

Risk Scoring 

Risk scoring using CVSS 

base score, exploit 

likelihood factor, asset 

criticality weight, and 

machine-learned 

prioritization. 

Exploit likelihood, asset 

criticality, machine 

learning prioritization, 

retraining, and 

auditability. 

CVSS, exploit databases, 

machine learning 

classifiers, real-time threat 

intelligence. 

Accurate, real-time 

risk prioritization 

and remediation. 

Patch 

Management 

Automated patch sourcing 

using vendor APIs, IaC 

updates, risk-based rollout 

strategies, and deployment 

orchestrators with rollback 

mechanisms. 

Canary deployments, 

blue/green deployment, 

incremental 

environments, rollback 

mechanisms, health 

checks. 

Ansible, Terraform, 

patching tools, deployment 

orchestrators, rollback 

plans. 

Automated 

patching with low-

risk and high-risk 

rollback strategies. 

Implementation 

Details 

CI/CD tools such as Jenkins 

and GitHub Actions, with 

retry policies, dead-letter 

queues, audit logging, and 

Kafka for event 

propagation. 

Jenkins, GitHub 

Actions, declarative 

syntax, webhooks, retry 

policies, ELK stack 

logging, API 

integration. 

Jenkins, GitHub Actions, 

ELK stack, Kafka, REST 

APIs, webhooks. 

Complete 

integration with 

CI/CD tools, retry 

policies, and audit 

logging. 

 

3.2. Vulnerability Detection 

Vulnerability detection uses a polyglot toolchain that consists of static analyses, container scanners, and 

dependency checkers. Open-source static analyzers live in the form of source-code parsers that capture patterns of insecure 

code, along with proprietary linters that have been customized to organization-specific threat models (23). The scanners 

used in the container scanning program run container image checks to detect packages that are excessively obsolete and 

configuration errors, using publicly available vulnerability feeds to detect known CVEs, and dependency checks.KersKers 

parses language-specific manifest files, like Maven POMs, npm package-locks, and Python requirements, and cross-

references them against curated advisories to highlight vulnerable libraries. 

To maximize the throughput of the pipeline, detection operations are performed in parallel on special agents. 

There is a central orchestration service that breaks scan jobs by repository path or component and sends them to worker 

pools. Parallel execution decreases build latency, allowing for a full scan of large monorepos to be completed in less than 

ten minutes on average. Optimization strategies applied to pipelines are incremental scanning (the technique in which only 

modules that were changed are scanned) and file-level caching of past outcomes. Change detection uses Git diffs to limit 

static analysis to new or modified files and to cache container layers to exclude re-scanning of unchanged layers of images 

(28). The optimizations performed strike a balance between completeness and speed and continue to provide confidence 

to the rapid-paced feature branches without hindering the efficiency of the developers. 

 The results of scans are normalized to a standard JSON schema that includes metadata like vulnerability identifiers, 

severity levels, file or image paths, and the time of detection. This schema directly feeds the message bus so that 

downstream consumers may always interpret findings consistently, independent of scanner origin. Normalization also 

enables extensibility, since it would be possible to add new scanner plugins with a few schema modifications in the future. 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

________________________________________________________________________________________
1792

Vol: 2025 | Iss: 02 | 2025
 

3.3. Risk Scoring 

The process of risk scoring involves combining standardized metrics of severity with the asset criticality and 

exploitability, which results in the development of composite risk values. The data model is an expansion of the Common 

Vulnerability Scoring System (CVSS) base score by multiplying it by an exploit likelihood factor (through real-time threat 

intelligence feeds) and an asset criticality weight (through business impact assessments, such as financial loss per downtime 

hour). Exploit likelihood combines public exploit databases and dark-web threat signals to give a proxy estimate of real-

time attacks against distinct vulnerabilities. 

Machine-learned prioritization is applied on top of risk rankings. This layer uses a dynamically scaled inference 

network architecture based on natural language inference work to learn sophisticated interactions of features between the 

metadata of vulnerability and the context of the asset (26). The model consumes vectors of asset taxonomy embeddings, 

exploit signals, and historical remediation timelines in addition to vectors of CVSS attributes. It produces a probability 

score that indicates the urgency of action to be remediated, thereby enabling triage decision-making at a fine granularity in 

order to move beyond fixed thresholding. Periodic retraining channels use feedback in a closed-loop system, like current 

success rates in patches or post-remediation incidents after a series of such attacks, to change the parameters within the 

model and maintain accuracy in the model. Score results are redistributed back into the CI/CD using the message bus and 

fire conditional logic. Findings of high risk can automatically produce remediation tickets or remedial pull requests, but 

low-risk items can be batched with a scheduled review time. All input features of the model, as well as score decisions and 

model outputs, are logged as part of auditability and compliance reporting. 

3.4. Patch Management 

The patch management involves the automated acquisition and application of remedies according to the risk 

levels. Patch sourcing is based on the automated querying of vendor APIs and publicly available dependency registries 

under the patch sourcing paradigm to provide recommended patch artifacts or updated dependency versions. In the case of 

system packages, IaC manifest updates are automatically composed based on comparisons between current package 

versions and vendor advisories to build Ansible playbooks or Terraform modules that apply patches (18).  

Risk-based rollout strategies determine the deployment patterns. Canary deployments apply patches to a small 

percentage of instances, hashing health metrics before continuing on the full rollout. Blue/green deployment, Incremental 

environments. There is a parallel provisioning of updated environments, and once they are validated, traffic is redirected 

into green environments. Rollout orchestrators subscribe to topics about risk-scoring arrangements in the message bus and 

enforce the deployment policies based on composite scores. Critical high-risk items initiate immediately a canary job, and 

medium-risk patches are admitted to the scheduled maintenance windows. Deployment workflows take account of rollback 

mechanisms. Post patch, automated health checks permit a validation of the application and infrastructure. In the failure 

case, if any, say service latency spikes or test suite regressions, the orchestrator runs the pre-written rollback plans and 

restores known good configurations. This secures the system and avoids massive disturbances when it fails to patch. 

3.5. Implementation Details 

In the implementation, Jenkins and GitHub Actions are used as examples of the CI/CD tools. Jenkins pipelines 

are written using a declarative syntax that includes such stages as Checkout, Static Scan, Build, Dynamic Scan, Risk Score, 

and Deploy. Artifacts are released to the same Nexus repository by each stage and output event propagated as Kafka topics 

using a custom plugin. GitHub Actions observes a similar structure through YAML files that define jobs to be executed on 

self-hosted runners (15). As workflow artifacts, scan outputs are posted and sent to the triage service via webhooks. 

A retry policy and dead-letter queues are based on a centralized notion of error handling. Transient failures scanner 

timeout or network blips, will be automatically retried up to 3 times with exponential backoff. Terminal errors forward the 

event to a dead-letter topic so that a human can inspect them. Audit logging records each pipeline activity, such as scanner 

runs, scoring outcomes, patch installations, and rollbacks. The aggregated logs from ELK stacks can be used to query on 

dashboards that correlate security events and deployment metrics. Pipeline integration in the dashboard offers pipeline 

health, and which pipelines are at risk. A custom frontend is subscribing to Kafka streams to present summary widgets 

(e.g., pending high-risk findings, mean time to remediation, and patch success rates). With drill-down views, the analyst 

can investigate individual events. REST APIs make scoring and orchestration data available to incorporate third-party 

analytics applications and issue tracking systems. 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

________________________________________________________________________________________
1793

Vol: 2025 | Iss: 02 | 2025
 

 

Figure 3: CI/CD pipeline stages with Jenkins and GitHub Actions for automated deployment 

Figure 3 above shows the phases of a Continuous Integration and Continuous Delivery (CI/CD) pipeline that 

automates the development-to-production process as shown below. The pipeline starts with the Commit step since the code 

is committed to repositories (such as Git). The code goes through Build, Test, Stage, and is then deployed. The usual CI/CD 

tools that are used to implement these phases are Jenkins and GitHub Actions, in which pipelines are written in a declarative 

syntax. Static scans, dynamic scans, and risk scoring are combined throughout the pipeline to ensure security and high 

quality. The release of any artifact to the repositories and the propagation of events occur through the Kafka topics. The 

error handling facilities are also included in the pipeline in the form of retry policies, dead-letter queues, and audit records. 

The pipeline health, remediation times, and patch success rates are among the essential metrics visualized in a custom 

dashboard, enabling operators to monitor and analyze the CI/CD processes in real time. 

4. Experiments and results  

4.1. Experimental setup 

The representative microservices program was used in the experimental assessment, intended to imitate real-world 

software development and deployment behavior. The application was written to represent a sum of ten stateless and stateful 

services engaged with relatively distinct business abilities, which will talk to each other via REST APIs and message 

queues.  The injection of vulnerability was performed systematically by using a controlled fault injection system to inject 

fifty known security vulnerabilities across various categories, including SQL injection, insecure serialization, and outdated 

dependencies. These injections were parameterized to differ in exploitability patterns, not to mention represent real-world 

mutation rates of enterprise codebases (16). There were two different workflows compared. This was the starting point of 

the workflow, a traditional manual triage cycle: the head of the triage is the security analysts who are given direct scan 

output (raw data) of a set of static and dynamic scanners, who in turn consulted published vulnerability and attack databases, 

and scored the finding on its importance to the code context and sensitivity of the asset. The analysts logged decisions in a 

ticketing system and escalated based on severity matrices. The potential of the automated pipeline that was tested was used 

in the experimental workflow, which combined static scanning, dynamic, and software composition checks with the 

composite risk-scoring engine. Risk scores were based on a combination of CVSS and base metrics, along with actual 

threat-intelligence feeds and asset criticality weighting sources to power prioritization and automatic ticket creation. 

The testbed was installed into a Kubernetes cluster with resource quotas similar to those found in a typical 

enterprise, such as a CPU core limit of eight cores and sixteen gigabytes of RAM per node. Build and scan work was run 

over self-hosted runners to eliminate discrepancies across shared infrastructure. Parallel execution optimizations are also 

applied to both workflows, and file-layer caching mechanisms were enabled equally in both workflows to make a fair 

comparison. Each trial of the workflows was repeated 12 times to test the vulnerability and assess susceptibility against 

environmental variation. NTP was used to synchronize time to prevent timestamp drift. 

Several factors in the design of the experiment facilitated the standardization of all trials. Profiling Environmental 

variables: Network latency, node scheduling delays were profiled and normalized, and synthetic load was injected during 

control runs. The verbosity of logging was defined to obtain timestamps of every stage of pipelines without biasing the 

measurement. Each experiment was done on a setup involving a private cloud to exclude external interruptions, and testbed 

snapshots were restored to come up with the same starting point in between tests. The methodology used open-source 
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SAST and DAST scanners that are used with enterprise-representative rulesets. The parameters of the static analysis levels 

have been tuned and set to moderate sensitivity settings to filter out less severe results. Dynamic scanners conducted and 

executed authenticated tests with the help of test credentials. An adapted open-source tool called vulnerability injection 

injected exploitable patterns into code and container images using parameterized injectors. This strategy gave a controlled 

vulnerability matrix that was structurally similar to what would be seen in production-scale (9). All in all, the experiment 

configuration of the realistic complexity of an application, systematic introduction of vulnerabilities, and enterprise-like 

structures of the infrastructure were set to provide a strong tool where a fully automated pipeline could be tested versus a 

manual one. All test orchestration or scanner calibration, in this case, was directed at achieving maximum external validity 

without compromising control of experimental variables. 

4.2. Metrics collected 

The analysis focused on the indicators that were closely related to the effectiveness and performance of security 

operations and the system. Time-to-triage was calculated by the difference between the scan completion and the moment 

that someone had assigned a severity rating or an automated ruling had been made about the vulnerability. In the case of 

manual processes, this measure collected the time analysts spent reviewing reports, searching exploit databases, and 

referring to team documentation. Time-to-triage was the latency measured in the automated pipeline in the rule-based 

filters, risk-scoring calculations, and ticket-creation processes. Time-to-patch was the time taken between the detection of 

a vulnerability and the application of a remediation patch to the target environment through acquisition, build integration, 

and deployment/orchestration. This time, it contained automated dependency updates, assertions through builds, and canary 

or blue-green deployment stages. Resource usage indicators tracked average build times, CPU usage, memory 

consumption, and I/O issues, as well as network bandwidth for the scanning agents and orchestration services (22). Build 

time overhead was calculated as the percentage difference in build time with security measures enabled and a baseline 

build that did not scan. The amount of network bandwidth used in authenticated dynamic scans was measured to determine 

I/O bottlenecks. The memory usage recorded peak resident set sizes of analysis containers to prevent exceeding resource 

quotas. 

False positives and false negatives were measures to evaluate the precision of triage. False positives referred to 

non-exploitable issues that were reported as high-risk, and false negatives signified critical vulnerabilities that could not 

be detected by an automatic filter or could be disregarded wrongfully. Patch coverage, as the percentage of the number of 

essential vulnerabilities patched during specified maintenance windows, was identified as a compliance-driven measure 

that alleviated both timely and operational reporting. Triangulating these metrics, the assessment was able to capture a 

picture of the overall operational efficiency, accuracy, and system overhead at the two sets of workflows. 

Table 2: Comparison of Automated vs. Manual Workflow Performance and Efficiency in Vulnerability Management 

Metric/Factor Automated Workflow Result Manual Workflow Result Key Observations 

Time-to-Triage 

Reduced by 50%, 60 

mins/vulnerability (95% CI: 

55-65) 

120 mins/vulnerability 

(95% CI: 110-130) 

Statistically significant difference 

(p < 0.001) 

Time-to-Patch 
30% increase in critical 

coverage 

58% addressed during 

maintenance window 

Automated patching showed 

increased efficiency 

Patch Coverage 
88% addressed during 

maintenance window 
240 mins 

Higher compliance rate with 

automated workflow 

Average Patch 

Deployment Time 
Reduced by 25%, 180 mins 

Increased latency in 

vulnerability handling 

Reduced average patching times, 

better patch management 

CPU Consumption 

(Peak Scanning) 
Doubled, but within limits 5% 

No resource over-utilization during 

peak load 
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Metric/Factor Automated Workflow Result Manual Workflow Result Key Observations 

False Positives Decreased by 20% 20% 
Less cognitive burden, increased 

ease of use 

False Negatives 1.8% None 

High accuracy in detection, 

minimal risk of overlooking critical 

vulnerabilities 

Rollback Incidence <3% >5% 
Higher stability, fewer rollback 

events in automated deployment 

Patch-Delivery 

Performance 

Stability 

Stable, Coefficient of variation: 

0.05 
5% rollback incidence 

Stable patch delivery, highly 

repeatable results 

Developer Opinions 
85% rated pull request 

annotations as highly helpful 

Lack of integration and 

higher cognitive load 

Strong likelihood of long-term 

adoption 

 

4.3. Quantitative results 

Automated pipeline reduced median time-to-triage by 50% over the manual pipeline baseline. The median time 

of manual triage was 120 minutes/vulnerability (95% CI: 110130), whereas the automated method took around 60 

minutes/vulnerability (95% CI: 5565). It was later determined with a paired t-test that the difference was statistically 

significant (p < 0.001). The standard deviation of the automated triage latency was 12 minutes, as it represented expected 

behavior compared to 40 minutes of variability of manual triage due to human variability. The time-to-patch greatly 

improved, with a 30% increase in the coverage of critical findings. The automated workflow process has reduced the gap 

in the compliance rate by 51% within the target maintenance window. This is because 88 percent of the critical 

vulnerabilities were addressed during the target maintenance window under the automated workflow process, compared to 

58% under the manual process (21). Empirical validation of automated vulnerability curation and characterization. IEEE 

Transactions on Software Engineering, 49(5), 3241-3260. As in the Table 2 above, automated orchestration lowered the 

average patch deployment times by 25%, reducing the average from 240 minutes to 180 minutes. During scanning peak, 

CPU consumption by pipeline agents doubled on average (15 percent each) but did not exceed configured limits. 

Measurement results of accuracy showed that the rate of false positives decreased by 20% in the implemented 

automated system due to contextual risk filtering that silenced low-severity alerts in line with algorithmic prioritization 

strategies found in previous optimizations of dispatching (20). There were also no widespread false negatives (1.8%), 

showing good coverage of detection. The ability to give the same patch coverage between repeated experiments was well-

characterized with a coefficient of variation of 0.05, which demonstrates that the patch-delivery performance was stable. 

Concerted results that were displayed revealed that the rollbacks’ incidence would be less than 3 percent of the automated 

deployment, as compared to 5 percent with manual cycles, pointing to a higher rate of dependability. Further resilience-

based metrics measurements also showed that the rollback events were fewer in the case of automated deployments, at less 

than 3 percent as opposed to 5 percent with manual cycles, signifying increased reliability. 

4.4. Qualitative observations 

The opinions of the developers were gathered through formal questionnaires and semi-structured discussions with 

twenty participants in both workflows, who are staff professional engineers and security experts. The participants said that 

there was less cognitive burden because the automated pipeline filtered low-risk alerts so that only high-priority items were 

visible. Integration with version control and ticketing platforms was rated with a mean of 4.2 on a five-point Likert scale 

with ease-of-use (10). The use of feedback mechanisms incorporated into the description of pull requests was mentioned 

as one of the most effective, and 85% of respondents rated the pull request annotations as being of the most excellent 

assistance. 
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Operation impact was highlighted in several incident case studies. In one case, an exploited SQL injection 

vulnerability uploaded into an online employee management service, as identified by an automated triage process, was 

patched in four hours of triaging, ticketing, and patching, compared to forty-eight hours using manual triaging. Another 

situation saw an insecure deserialization vulnerability in an order processing service, assessed as high risk, and an 

immediate deployment of the canary that averted a possible exploit surface in production. A third case study used an 

obsolete logging dependency in a metrics aggregation service to identify the dependency and patch it automatically during 

a planned maintenance window that would have otherwise identified a regression in previous manual runs. As one of the 

respondents stated, the pipeline reduced the feeling of security, being an impediment to development rather than an aspect 

of it. According to the surveys, 95% of the respondents would recommend using an automated pipeline. The qualitative 

aspects of these data points support quantitative results and indicate a strong likelihood of being adopted in the long term 

(25). Further deployment resilience measurements showed that rollback events on the automated deployment processes 

were in less than 3% of the automated cycles as compared to 5% during manual cycles, a factor that signifies higher 

reliability. The experiment was designed to value repeatability since all the stages of the pipeline events were recorded 

automatically. 

5. Discussion  

5.1. Interpretation of results 

The findings indicate that automation is reliable in prioritizing security issues because it uses deterministic risk-

scoring algorithms on all the vulnerability cases. In contrast to manual triaging, which remains a matter of individual 

analyst experience, workload, and contextual interpretation, a given automated pipeline uses a pre-defined set of rules that 

includes a combination of CVSS and live threat-intelligence feeds coupled with weights of criticality of assets, to rank 

findings on a repeatable basis. This reliability means that the same set of vulnerability patterns will be assigned the same 

level of severity no matter who or when they are reviewed, giving less variation in both the triage delay and the quality of 

decision making. 

Such uniformity, however, means some trade-offs between accuracy and speed. Auto-prioritization has the 

potential to dramatically improve throughput of high-scale scan data, beating median triaging times by 50 compared to 

manual systems, but can miss subtleties in context that the human operator would pick up on using the more gradual scoring 

systems. An example is the use of an attacker-specific exploit chain or business-critical chain of logic where not all possible 

exploits or logic may be encoded in the risk-scoring engine, thus resulting in false negatives when scoring cutoffs are 

needlessly high. Excessive scoring regulations can deliver false positives, causing the loss of focus on key problems. The 

trade-off has to be balanced by appropriate calibration of scoring weights, periodic review of threshold settings, and 

incorporation of exception-handling workflow. 

Cost considerations of resources also inform this balance. The CPU costs and memory requirements of the 

automated pipeline translated to about 15% longer build times at peak scanning periods, but those were offset by fewer 

person-hours of human analysts working, and a smaller number of patches being late. The throughput benefit of the 

automated system in a high-velocity setting in which vulnerability volumes can quickly surge can, in many cases, exceed 

the slight infrastructure cost (33). Businesses also need to consider whether to use cloud-based or on-premise resource 

deployments to avoid creating bottlenecks within continuous integration processes due to the increased scanning efforts. 

On balance, automation provides a repeatable set of prioritization systems that speeds up response time, but also needs 

continued amending to sustain precision and resource consumption. 

5.2. Scalability considerations 

Burst vulnerability, Scalability is essential to current DevSecOps. Vulnerability scan output may increase several 

orders of magnitude in a few hours when a zero-day is issued or a coordinated exploit campaign is declared. In these cases, 

an automated pipeline will need to be able to dynamically provision compute capacity, spinning up more instances of 

scanners or using a container orchestration auto-scaler to balance time-to-triage SLAs. Business intelligence and 

operational analytics-based approaches and practices can be used to help predict swings in scan volumes and pre-provision 

resources in advance to accept work initially without service impact (14). 

There is the further complexity of multi-team pipeline orchestration. Ownership of microservices in large 

organizations is frequently dispersed between tens of development teams, with different codebases, release schedules, and 
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risk tolerances. A scalable security pipeline should thus provide multi-tenant settings, where resource quotas and scan 

policies can be isolated by team, while maintaining a centralized view. This necessitates modular pipeline design, where 

each of the stages (SAST, DAST, SCA) can be customized through configuration plugins, and a standard orchestrator that 

combines results into a single dashboard (19). The role-based access control applies policy boundaries, so each team can 

see only their findings, as security operations maintain the overview of trends between different teams and patterns of risks 

across the system. 

In addition to this, pipeline elasticity must consider maintenance windows and regulatory audit requirements. In 

regular releases, scanning loads and deployment orchestrations are aligned to change-management systems and are not 

synchronized. By introducing queuing latencies and back-pressure controls, it is possible to avoid resource contention 

issues when parallel teams initiate scans simultaneously. Vegetation in practice means integrating messaging queues or 

service meshes, which decouple the initiation of scans with the processing of results and flatten out workload spikes, and 

make analysis agents horizontally scalable. Taken together, these approaches guarantee the responsiveness of the security 

pipeline during bursts and the ability to coordinate on a wide range of development teams without compromising on the 

performance or the governance. 

 

Figure 4: Scalable DevSecOps pipeline with multi-tenant support and dynamic resource provisioning 

The Figure above represents the stackArmor ThreatAlertTM platform, which is meant to deliver a managed 

DevSecOps security service, with a code-to-cloud span. The platform adopts a detect-respond-comply approach, smoothing 

together DevSecOps technologies, people-based analysis, and ongoing risk governance. This measure will simply make 

the vulnerability scanning dynamic to deal with the spikes in the count of scans in case of worst-case scenarios, such as 

zero-day vulnerabilities or exploitation campaigns. The platform is a multi-tenant pipeline orchestration and keeps team-

isolated resources and scan policies centralised with oversight. StackArmor offers the efficiency to manage vulnerability 

across a variety of teams and environments, with in-built elastic scaling, role-based access control, and modular pipelines. 

StackArmor is resilient to regulatory requirements such as NIST, OWASP, and CIS. 

5.3. Best practices and lessons learned 

An important consideration, as learned during the implementation, is the importance of the modularity of the 

plugins. With the scanning tools and risk-scoring logic capabilities encapsulated as discrete, as well as swappable modules, 

pipeline maintainers can retrofit or redesign modules without undermining the entire workflow. This modularity enables 

experimentation with new types of analysis engines--either new DAST platforms or machine-learning-based SCA tools--

and enables the maintenance of existing orchestration structures. Fail-safe defaults also improve reliability: when some 

plugin fails or gives an unexpected error, the pipeline should restore a conservative classification stance, marking all 

unprocessed findings as needing manual review instead of quietly ignoring them. The strategy avoids any fatal 

complications that would go unnoticed and keeps data integrity intact. 

It is also necessary to align security policies with the DevOps processes. Incorporating security gates, like static 

analysis checks or dependency scans, as part of pull request validation leads to a shift-left mindset in security operations 

so that security is seen as part of the typical developer workflow, as opposed to a post facto audit. New microservice 

security policies, enforced through policy-as-code specifications (YAML rule sets), secure microservices with their 

policies, but also guarantee standardized security baselines (6). Automated remediation recommendations, such as version 

bump pull requests or snippets of code that address vulnerabilities, ensure there are fewer barriers to security hygiene and 
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instead motivate developers to address security upfront. The integration not only affects patch coverage positively (30% 

improvement in critical cases) but also fosters the culture of collaboration between development and security and makes 

vulnerability management an ongoing, shared task (12). 

5.4. Limitations 

Although powerful, the usefulness of the automated pipeline is limited by the scanner coverage and machine-

learning model drift. Analysis tools and software composition analyzer depend on up-to-date vulnerability databases; 

failure to receive the new entries transmitting the new CVEs, or inaccuracy in vulnerability signature, can create false 

positive results. Likewise, when risk-scoring models use any ML element (like predictive exploit likelihood classifiers), 

the models have to be retrained frequently to accommodate changing attacker strategies. Incorrect prioritization can also 

be caused by outdated training data, which boosts deprecated threat vectors and significantly underestimates newly 

emerging ones. The adoption is limited by organizational and cultural barriers as well. Departments that are used to working 

manually might be reluctant to work on an automated workflow that would replace human knowledge, and it is especially 

discouraging during the first stages of false positives, which can undermine confidence. Transparent reporting dashboards 

are also important to build confidence in change management; showing risk-score breakdowns and explanation of decisions 

made by the automated detection processes is thus an important topic (24). The allocation of resources may lead to 

arguments in situations where security needs necessitate building resource quotas, which require cross-functional 

agreements on infrastructure budgeting. In the absence of executive sponsorship and an adequate communication flow, the 

pipeline may be rather understood as a compliance burden, instead of a value-add. 

6. Future Work  

Future work to support changes in the threat landscape should study adaptive risk models that incorporate 

feedback responses to outcomes of incident responses. Pipelines can ensure clear priorities are given to attack success by 

feeding exploit data collected in the wake of a post-mortem exploit and patch success rates back into the scoring engine. 

The priorities become empirical in the realm of an attack. This reactive model would be similar to reinforcement learning 

in how it would continuously optimize the weights and thresholds of severity with real-life breach patterns in production 

environments (1). Developer interactions can also be subject to closed feedback loops. Surveys on the difficulty of fixes 

and patch impacts, running as pull request automated actions, can be used to retrain human-in-the-loop models, calibrating 

algorithmic signals to those real-world repair efforts. Another source: bringing real-time telemetry data from runtime 

application self-protection (RASP) systems into the mix provides an additional level of correlation between scan results 

and live attempted exploits, adding to context while assisting in the confirmation of scanner effectiveness. To move on to 

genuinely intelligent vulnerability management pipelines, predictive analytics, and feedback loops will need to be further 

integrated with explainable AI methods so that the automation will not only speed up triaging but will also learn and adjust 

according to the environment. Such innovations have the potential of making response times even shorter and a more secure 

posture in the fast-evolving software spaces. 

6.1. Adaptive, feedback-driven risk models (closed-loop learning) 

Context-sensitive risk models based on closed-loop learning can be used to continuously improve vulnerability 

prioritization based on real-time feedback on the outcome of detection and remediation activities. In such a paradigm, risk 

scores of vulnerabilities identified are modified in part to patch success ratios, severity recording of incidents, and developer 

validation response. Periodically retraining the classifiers based on stateless generative methods to simulate possible exploit 

scenarios, up-sampling data to include new threat patterns, and changing the scale of asset criticality, the system could use 

additional training data to assist in retraining the classifiers and in the future maintain them to new emerging patterns. The 

technique of generating synthetic data, first shown to be effective in training medical diagnostic models, serves as an 

example of how generative models can be used to provide larger datasets to train a classifier with privacy maintained, and 

large amounts of labeled data are not required (30). A live operational data-driven continuous validation will mean that the 

risk-tending models will be consistent with changing risk profiles within organizations, and will reduce the drift in adjusting 

the adaptive models. 

6.2. Extending to multi-cloud and hybrid environments 

Contemporary business applications can include workloads across several cloud platforms and on-premises 

environments, where heterogeneous APIs, security controls, and configuration management mechanisms are used. To 
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extend automated triage pipelines to accommodate these hybrid and multi-cloud environments, modular connectors must 

be capable of integrating with a variety of scanning tools, security posture APIs, and orchestration platforms (3). These 

connectors should facilitate homogeneous ingestion of vulnerability and homogeneous risk scoring as well as unified ticket 

creation across multiple environments. Scalable design principles as used in big healthcare communication systems focus 

on loosely coupled elements, message bus designs, and standardized schemas to design and acquire interoperability and 

load performance across an unstable traffic load (29). The current practice of cloud-agnostic abstractions and pluggable 

adapters will enable organizations to have only one core logic of triaging, but support specifics in asset classification and 

move workflows applied by providers. 

6.3. Integration with incident-response and SOAR platforms 

The automated linkage of incident-response workflow processes and Security Orchestration, Automation and 

Response (SOAR) systems between vulnerability discovery and response coordination actions can help address this gap. 

This acts to pipe prioritized findings directly to orchestration engines where the pipeline may initiate automatic 

containment, forensic data collection, and communication playbook actions using preconfigured rules. Incorporation and 

syncing of the incident status and the vulnerability lifecycle information requires bidirectional synchronization, and it can 

be done using standardized interfaces (like RESTful webhooks or message queues). Context-rich artifacts, such as service 

identifiers that are affected, traces of proof-of-concept exploits, and recommended remediation, further support response-

team decision-making. An assessment of the platform-specific response strategies, like the automatic adjustment of firewall 

rules or container isolation as a critical finding strategy, will show once again the operational value of end-to-end 

integration. Future efforts should look at enterprise-level playbooks, which respond dynamically to shifts in risk posture 

and allow conditional branching in response to model confidence thresholds and importance scores (31).  

 

Figure 5: Integration of SOAR with incident response, orchestration, and threat intelligence systems 

The figure above demonstrates how the Security Orchestration, Automation, and Response (SOAR) platforms can 

be connected to select security functions. SOAR connects key aspects, including security orchestration, incident response 

platforms, and intelligence, into a platform that allows automating processes between vulnerability identification and 

incident response. With the help of the notion of full bi-directional synchronization through standard interfaces, such as 

RESTful webhooks or message queues, SOAR systems allow a transparent flow of information and barrier-free 

communication between components. This combination improves the decision process with the context-enriched artifacts 

and the response actions, such as automatic containment, forensic data collecting, and communication playbooks. Dynamic 

adjustments of the system also apply, such as changing the firewall rules or container isolation. The aim is to build 

enterprise-scale playbooks capable of adjusting to changes in the risk posture and modifying response procedures to 

changes in threat intelligence and confidence levels. 

6.4. Enhancing ML-model explainability for compliance audits 

Increasing regulation and internal auditing are forcing transparency in the automated decision-making systems. 

In their turn, to meet the compliance needs, the ML-based models to be applied in vulnerability triage will be expected to 

yield interpretable information reflecting the reasons why specific findings were to be prioritized or suppressed. Audit-

ready explanations can be generated using attention-weight visualization, SHAP-value attribution, and rule extraction of 

ensemble models. Ticket exposure to standardized explanation forms will help auditors have a backtrack to source data 

inputs and model parameters in the logic used to calculate risk scores (35). In addition, incorporating these explanations 
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within developer interfaces, pull request comment boxes, and dashboards will foster transparency and allow security and 

engineering teams to collaborate promptly. Introduce explainability verification pipelines in which generated explanations 

are checked against domain rules, and expert evaluation will help increase the trust in model-based decisions. Future studies 

must be done to determine the trade-off between the granularity of the explanations and system performance to achieve a 

relevant balance for audit readiness. 

6.5. Large-scale field trials and longitudinal studies 

To prove the effectiveness and sustainability of automated triage pipelines, thorough field trials and multi-year 

observational research are required. The context-specific adoption impediments, as well as performance and characteristics, 

will be discovered by implementing the system in various types of organizations, such as small-scale development teams, 

as well as global enterprises. Factors that will be measured longitudinally will include time-to-triage, patch compliance 

rate, reduction in false positives, and developer satisfaction. Analytics around these measures will allow trend analysis and 

points of iterative improvement to be determined (5). The installation of user feedback in production deployments will 

allow the capture of experiential information, and A/B testing of alternative pipeline setups will allow the best 

parameterizations to be found. Joint research efforts with industry players allow the sharing of data with suitable privacy 

protections and, therewith, a faster evaluation and development of evidence-based best practices in security automation at 

scale. 

7. Conclusion 

The report introduced a scalable automation methodology of vulnerability triage and risk-based patching inside 

CI/CD pipelines that addresses the business challenge of delivering new software quickly, while maintaining high security 

control and availability. The main goals of the framework were to integrate the static and dynamic security scanners, 

eliminate a composite risk-scoring engine, and automate patching with minimal performance costs. The system presented 

a consistent control plane, which was occupied by combining various tool outputs into one centralized location via the 

insertion of security decision points into pre-merge and post-build workflows, and thus allows a consistent and auditable 

remediation activity. Architecture contributions were a modular microservices architecture that the framework could 

interface with some major CI/CD platforms using pre-merge hooks and post-build pipelines, and a distributed message bus 

to decouple scanner producers and risk-scoring and orchestration consumers. The risk-scoring module’s base CVSS was 

expanded to include real-time threat information and intelligence weight to assets. A machine-learned prioritization layer 

was added, incorporating natural language inference to refine estimates of urgency. Patches prepared by orchestrating 

canary deployment and blue-green deployment, together with automated rollbacks, likewise created resilience in case of 

failure. 

There were significant operational bonuses as evidenced empirically. The automated pipeline was able to cut the 

median time-to-triage by half, from 120 to about 60 minutes per finding, and had less variation between trials. Critical 

vulnerability patch coverage rose by 30%, and on-window remediation rates by 58 to 88%. False positive percentages 

dropped by 20%, and rollback incidences fell from 5 to under 3%. The resource overhead usage was allowed to stay in 

enterprise quotas, with a healthy fifteen percent peak during processor usage to accomplish scanning tasks. Such findings 

support the framework as promising to speed up the process of remediation and increase its accuracy, as well as system 

reliability. Practical guidelines to practitioners include modular architecture of the plugins, shift-left, and closed-loop 

feedback. Making the tools and risk models into independent modules that can be replaced or changed individually makes 

it very easy to switch or alter rudimentary parts along the pipeline without affecting the entire pipeline. Inclusion of security 

gates into the pull request validation fosters interaction with developers and decreases patch fatigue. It is possible to 

continuously improve risk weights through closed-loop mechanisms that capture patch success metrics and incident 

outcomes. It is also accompanied by the fact that a move to loosely coupled connectors embraces multi-cloud and hybrid 

environments, and integration with SOAR and incident-response platforms means all triage results are migrated into 

coordinated containment and forensic efforts. 

Framework drawbacks consist of the reliance on scanner coverage and the necessity of model retraining to remove 

a drift. Because they run on prior knowledge, both static and dynamic analyzers must use the most current vulnerability 

feeds, and ML classifiers would need to include new exploit information that has become available to maintain accuracy. 

The organization ought to develop formal retraining plans and keep track of accuracy measures to identify areas for 

improvement. Cultural obstacles and limitations might hinder the adoption, and that is why clear audit dashboards and 
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executive sponsorship are essential to develop trust and win infrastructure budgets. Silent failures can be guarded against 

by fail-safe defaults, conservative classification of modules on failure. In the future, the vision presupposes development 

to include self-healing CI/CD pipelines incorporating predictive analytics, possible AI, and telemetry real-time integration. 

In the future, a runtime application self-protection signal, a generative process of synthetic vulnerability simulation, and a 

compliance report documentation formatted to be explainable would enhance security. Long-term sustainability will 

require field trials and longitudinal analysis, both large-scale, to scale up and inform the best practices. Through ongoing 

operational learning and end-to-end automation integration, organizations can differentiate to bring proactive, business-

relevant security into the modern, fast-paced development cycles. 

Future cooperation of the security, development, and operations teams will be required when streamlining 

governance procedures, as well as ensuring that automation processes do not interfere with compliance changes and 

organizational goals. Increasingly complex threat landscapes have necessitated the use of data-driven and model-driven 

approaches to vulnerability management, which will allow organizations to keep pace with adversaries. In the end, adaptive 

learning, cross-platform compatibility, and explainable decision-making lead to truly robust software delivery streams that 

adjust and self-heal in the face of new risks as they appear over time. 
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