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Abstract 

The rise of agentic artificial intelligence has exposed a critical weakness in modern digital ecosystems, the 

lack of a unified, context-aware interoperability layer capable of connecting autonomous reasoning systems 

with the governed, deterministic world of enterprise APIs. Existing integration models  REST, GraphQL, 

and proprietary plug-ins  remain fundamentally stateless and syntactic, making them incapable of preserving 

semantic continuity, negotiating schemas dynamically, or supporting multi-agent collaboration at scale. This 

paper introduces the Model Context Protocol (MCP) as a new interoperability paradigm that bridges this gap 

by enabling persistent context propagation, context-bound tool invocation, and embedded governance 

metadata across heterogeneous systems. By positioning MCP as the semantic complement to traditional API 

infrastructures, we demonstrate how it enables secure, explainable, and policy-compliant orchestration of 

agentic workflows. We propose an MCP API Interoperability Framework that unifies context governance, 

dynamic schema alignment, and multi-agent coordination, and we validate its applicability through real-

world enterprise, multi-cloud, and scientific collaboration scenarios. Through comparative analysis and 

architectural modeling, the study shows that MCP transforms interoperability from a structural exchange of 

data into a semantic continuum that enables trustworthy, scalable, and auditable agentic AI. The results 

establish MCP as a foundational layer for the next generation of autonomous, interoperable, and enterprise-

ready AI systems. 

Keywords: Model Context Protocol (MCP); Agentic AI; API Interoperability; Context-Aware Computing; 

Enterprise Integration, Multi-Agent Systems; Large Language Models (LLMs). 

1. Introduction 

Interoperability has played a defining role in the evolution of distributed systems, from early Service-Oriented Architecture 

(SOA) and XML Web Services to REST-driven API ecosystems and today’s cloud-native microservices. Each of these 

architectural paradigms has attempted to simplify how heterogeneous systems communicate, exchange information, and 

enforce operational governance. However, the rapid emergence of agentic artificial intelligence (AI) systems capable of 

autonomous reasoning, multi-step planning, and dynamic tool invocation has revealed a fundamental mismatch between 

traditional integration mechanisms and the needs of modern AI-driven workflows. Existing interfaces such as REST, 

GraphQL, and event-driven APIs remain inherently stateless and schema-fixed, assuming that every interaction is 

independent and self-contained. In contrast, agentic systems operate through long-lived context that evolves throughout 

the reasoning process, requiring continuity, semantic alignment, and shared understanding across multiple tools, data 

sources, and collaborating agents. 

Agentic AI systems continuously generate and consume context in the form of intermediate decisions, observations, tool 

outputs, schema assumptions, and policy constraints. This evolving context is essential for coherent reasoning but cannot 

be preserved or interpreted using traditional API-driven architectures, which lack mechanisms for context propagation or 

semantic negotiation. As a result, AI-driven workflows must rely on brittle orchestration logic, repeated re-fetching of 

information, and ad-hoc serialization of agent memory. The problem grows even more acute in multi-agent environments, 

where several agents must coordinate on shared tasks while exchanging aligned schemas and governed context. Without a 

standardized protocol for managing context and semantic metadata, such collaboration becomes inconsistent and error-

prone. 

Despite decades of progress in enterprise integration, the underlying problem remains that existing interoperability models 

were never designed for context-persistent, semantically governed, multi-agent AI systems. Current mechanisms cannot 
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propagate reasoning state across tool boundaries, adapt to dynamic schema changes, or embed governance metadata such 

as data lineage, consent, and access constraints directly into the interaction fabric. This leads to fragmented cognitive state, 

governance blind spots, and operational inefficiencies, ultimately preventing enterprises from deploying autonomous 

agents safely and at scale. 

To address this gap, this paper explores the Model Context Protocol (MCP) as a new interoperability paradigm that 

complements traditional APIs by introducing a semantic, context-aware communication layer. MCP enables persistent 

context propagation, dynamic schema negotiation, embedded governance, and multi-agent collaboration capabilities 

essential for the next generation of enterprise-grade agentic AI systems. By treating context as a first-class construct, MCP 

bridges the cognitive–operational divide that limits today’s AI architectures. 

This paper makes the following key contributions.  

(1) It proposes the first unified MCP-API interoperability framework that harmonizes context-aware agent workflows 

with deterministic enterprise APIs. 

(2) It formalizes the MCP context lifecycle including schema negotiation, governance embedding, and multi-agent 

context propagation addressing core limitations of existing integration patterns. 

(3) It introduces a multi-layer semantic interoperability model positioning MCP as the middleware between cognitive 

agents and enterprise systems. 

(4) It validates the framework through real-world scenarios in enterprise integration, multi-cloud orchestration, 

DevOps automation, and scientific collaboration, demonstrating MCP’s practical value and applicability. 

2. Background and Motivation 

Interoperability has been a defining requirement of distributed systems for more than three decades. From tightly coupled 

service orchestration in early enterprise middleware to API-driven digital ecosystems and cloud-native microservices, each 

wave of architectural evolution has sought to simplify cross-system communication and integration. While these paradigms 

enabled deterministic, transactional workflows, the emergence of agentic artificial intelligence introduces demands that 

exceed the capabilities of existing interoperability standards. This section reviews the evolution of interoperability 

mechanisms, highlights the constraints of traditional API-based models, and examines related work in AI system integration 

and multi-agent collaboration. 

2.1. Evolution of Interoperability Mechanisms 

• Service-Oriented Architecture (SOA) [8]: SOA and XML-based web services (SOAP, WSDL, UDDI) were the 

first large-scale attempts to standardize cross-platform interoperability. These models emphasized strong 

contracts, typed schemas, reliability, and centralized governance. While they provided rigor, their rigidity and 

operational overhead made them unsuitable for rapidly evolving systems requiring flexibility and dynamic schema 

negotiation. 

• API-Centric Integration [9] : The introduction of REST, JSON, and OpenAPI specifications transformed 

interoperability into a lightweight, scalable, and web-native paradigm. API gateways  such as Apigee, MuleSoft, 

and Kong  extended this model with authentication, rate limiting, traffic routing, and auditing. However, REST 

and GraphQL remain fundamentally stateless: each invocation is independent, lacks memory of prior interactions, 

and assumes static schemas defined upfront. 

• Cloud-Native and Event-Driven Models : The shift to microservices expanded interoperability through 

asynchronous patterns using Kafka, EventBridge, Pub/Sub, and AsyncAPI specifications. These models improved 

real-time responsiveness but still failed to address semantic continuity, i.e., the ability to carry reasoning context 

across distributed steps. 

• The Rise of Cognitive and Agentic AI : LLMs and agentic frameworks (LangChain, LangGraph [11], AutoGen, 

Semantic Kernel) introduced a new form of interoperability centered on reasoning and adaptive decision-making. 

These systems require persistent context, multi-step tool invocation, and schema flexibility  capabilities 

misaligned with deterministic API infrastructures. The lack of a standardized context mechanism results in 

fragmented memory, duplicated orchestration logic, and brittle agent system interactions. 
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2.2. Interoperability Challenges in Agentic Ecosystems 

Agentic AI introduces workflows that are significantly more complex than traditional request–response models. Key 

challenges include: 

Context Fragmentation : Current frameworks use proprietary memory mechanisms  buffers, key–value stores, or 

embeddings  to maintain context. These mechanisms are non-standard, incompatible across vendors, and lack semantic 

structure. 

Schema Rigidity and Incompatibility : APIs expose static schemas that cannot adapt to dynamic agent reasoning. Agents 

frequently misinterpret schema fields, requiring brittle manual mappings. 

Stateless Execution Model : APIs cannot retain the cognitive state of an agent, forcing workflow engines to reintroduce 

context manually with each call, increasing redundancy and latency. 

Governance and Compliance Gaps : While gateways enforce authentication and rate limits, they do not understand intent, 

context scope, or reasoning lineage. This limits the safe deployment of autonomous agents in regulated environments. 

Multi-Agent Collaboration Complexity [12]: In multi-agent workflows, agents must share evolving context. Without a 

standardized protocol, this exchange is ad hoc, error-prone, and ungoverned. 

These limitations illustrate the need for a context-aware interoperability standard capable of bridging cognitive systems 

and enterprise APIs. 

2.3. Related Work in AI Interoperability 

OpenAI Plugins and Function Calling : Function-calling and plugin manifests provide structured tool interfaces but do 

not support persistent context, schema negotiation, or cross-agent collaboration. 

Proprietary Agent Frameworks [13] : Frameworks like LangChain and Semantic Kernel encapsulate memory and tool 

schemas but lack interoperability across ecosystems. Their context formats are not standardized and cannot be used for 

inter-agent communication. 

Agent-to-Agent Protocols (A2A) : Google’s A2A protocol focuses on direct communication between agents. However, it 

does not define robust interactions with APIs nor provide mechanisms for semantic context governance. 

Semantic Web and Knowledge Graph Technologies : RDF, OWL, and ontology-driven systems provide rich semantic 

interoperability but operate at a design-time level rather than runtime, agent-driven context propagation. 

Federated Learning and Secure Distributed AI : Federated AI frameworks enable multi-party model training but do not 

address runtime interoperability, schema alignment, or context persistence for agentic workflows. 

3. Overview of the Model Context Protocol (MCP) 

The Model Context Protocol (MCP) is an emerging interoperability standard designed to bridge the gap between 

autonomous, reasoning-driven AI systems and the deterministic, schema-bound infrastructure of enterprise software. As 

AI agents increasingly perform complex, multi-step tasks that involve planning, tool invocation, state retention, and 

collaboration with other agents, existing integration mechanisms such as REST APIs or GraphQL endpoints prove 

insufficient. These traditional interfaces are inherently stateless and syntactically rigid, assuming that each request is an 

isolated transaction rather than part of a continuous cognitive workflow. MCP addresses this limitation by introducing a 

semantic, context-aware communication layer that allows agents to exchange structured context, negotiate schemas 

dynamically, and interact with external systems in a policy-compliant and traceable manner. 

At its core, MCP provides a unified mechanism for representing and propagating context across heterogeneous tools, APIs, 

and agent runtimes. In MCP, context becomes a first-class construct: it includes the task intent, intermediate reasoning 

steps, tool results, schema definitions, and governance metadata that collectively describe the evolution of an AI-driven 

task. Instead of relying on proprietary memory formats or ad hoc serialization techniques, MCP standardizes how this 

context is structured, transmitted, and consumed. Every MCP interaction is bound to a persistent ContextID, enabling long-

lived reasoning continuity across multiple system boundaries. This allows an agent to maintain a coherent cognitive state 

even as it interacts with diverse enterprise platforms such as SAP, Salesforce, Snowflake, or cloud-native microservices. 

The Figure.1 illustrate the MCP-API interoperability architecture. 



Computer Fraud and Security  
ISSN (online): 1873-7056 
 

__________________________________________________________________________________________ 

1262 
Vol: 2025 | Iss: 01 | 2025 
 

 

Fig.1: MCP–API Interoperability Architecture 

Architecturally, MCP follows a client–host–server model that separates reasoning, orchestration, and system-level 

capabilities. The client is typically the agent runtime  such as a conversational AI assistant, autonomous workflow engine, 

or multi-agent orchestrator  which generates context, interprets user goals, and initiates tool interactions. The host acts as 

the protocol execution environment, responsible for registering MCP servers, validating schemas, managing capabilities, 

enforcing permissions, and ensuring that all communication adheres to protocol rules. MCP servers expose external systems  

databases, APIs, file repositories, or computation sandboxes  through standardized interfaces, enabling AI agents to 

discover and invoke capabilities without custom connectors or vendor-specific integrations. 

MCP defines three primary interaction surfaces: tools, resources, and prompts. Tools represent invocable functions that 

allow agents to interact with external systems, such as querying a database, creating a support ticket, executing a code 

snippet, or submitting a workflow request. Resources expose structured data objects  files, datasets, API entities  that agents 

can navigate and retrieve. Prompts act as reusable reasoning templates that guide the agent through domain-specific tasks. 

All of these capabilities are described using structured manifests and validated through MCP’s dynamic schema negotiation 

process, ensuring semantic consistency between the agent’s expectations and the system’s exposed functionality. 
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Communication in MCP is implemented through structured messages that contain contextual metadata, dynamic schema 

definitions, payloads, and embedded governance directives. These directives control how data may be accessed, retained, 

or propagated, enabling enterprises to enforce compliance, privacy, and audit requirements directly within the protocol. 

MCP supports multiple transports  including HTTP, WebSocket, and local IPC  yet maintains identical semantics across 

them. Its emphasis on bidirectional, context-rich communication makes it suitable for complex reasoning flows, multi-

agent collaboration, and agent-to-API orchestration. 

The primary advantage of MCP lies in its ability to provide context persistence, semantic alignment, and embedded 

governance  capabilities that traditional APIs cannot offer. MCP enables agents to negotiate schemas on the fly, reducing 

brittleness and eliminating the need for extensive custom mapping logic. Its vendor-neutral architecture allows agents, 

tools, and enterprise systems to interoperate without platform lock-in. By treating context as a shared and governed asset, 

MCP enables multiple agents to collaborate coherently on complex tasks, share intermediate results, and maintain semantic 

continuity throughout the workflow. 

Ultimately, MCP serves as the semantic middleware layer that connects cognitive AI with operational enterprise systems. 

It transforms interoperability from a fragmented, syntactic process into a governed, context-rich continuum  forming the 

foundation for scalable, explainable, and enterprise-ready agentic AI ecosystems. 

3.1. APIs as the Bridge to Enterprise Systems 

For more than a decade, Application Programming Interfaces (APIs) [14][15] have served as the foundational backbone of 

enterprise connectivity, providing the structured, governed, and secure interfaces through which business systems expose 

their data and capabilities. Platforms such as SAP, Salesforce, Oracle Cloud, ServiceNow, and major cloud providers rely 

on API-driven integration to enforce authentication, authorization, rate limits, traffic controls, and audit policies. In modern 

digital ecosystems, APIs represent the authoritative boundary where enterprise logic resides, offering deterministic 

behavior and predictable schemas that ensure the stability and integrity of mission-critical processes. Despite their central 

role, APIs were conceived for transactional interactions rather than the context-rich, multi-step reasoning workflows 

characteristic of agentic AI. Their stateless nature means that every invocation is treated independently, with no mechanism 

to preserve reasoning history or cognitive intent across repeated calls. 

This stateless execution model poses significant limitations when used by AI agents, which operate not as isolated query 

processors but as autonomous, context-driven cognitive systems. An agent analyzing an invoice, orchestrating cloud 

deployments, or generating a compliance report must carry forward intermediate decisions, observations, constraints, and 

semantic interpretations across multiple steps. Traditional APIs lack any facility to retain or interpret this evolving context. 

As a result, agent frameworks attempt to approximate continuity by reattaching context manually to each API call, leading 

to redundant data transfers, increased latency, and frequent misalignment between agent expectations and system responses. 

The rigidity of API schemas further amplifies these challenges. OpenAPI, OData, and GraphQL definitions are designed 

to be static, versioned documents, whereas agentic workflows often require dynamic schema adaptation as tasks evolve or 

as new tools become available. Consequently, agents must rely on brittle, handcrafted mapping logic to align their internal 

representations with the fixed schemas exposed by enterprise APIs. 

The cognitive disconnect between probabilistic reasoning systems and deterministic APIs also introduces operational 

complexity. Agents reason using uncertainty: they infer what data may be relevant, determine which fields matter, and 

adjust their plans dynamically. APIs, however, expect precise, fully specified parameters and return strictly structured 

outputs. This mismatch results in repeated queries, over-fetching or under-fetching of information, and an accumulation of 

orchestration logic within agent runtimes to interpret, reformat, or correct mismatched data structures. While API gateways 

provide robust governance  implementing security controls, rate limits, and logging  they have no awareness of agent intent 

or the semantic context behind each call. As autonomous systems become more complex and begin interacting with 

sensitive or regulated data, this absence of contextual governance introduces compliance risks, particularly when decisions 

must be auditable, traceable, and aligned with organizational policies. 

Multi-agent workflows further exacerbate the limitations of traditional APIs. When tasks require coordination across 

specialized agents  for example, a procurement analytics agent working in tandem with a finance compliance agent  each 

agent must operate with a shared understanding of the underlying data and state. In a purely API-driven model, this shared 

context must be replicated manually, leading to fragmentation, misinterpretation, and duplication of effort. Without a 
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standardized context layer, agents cannot collaborate effectively or maintain semantic continuity across complex enterprise 

processes. 

3.2. Agentic AI and the Interoperability Challenge 

The emergence of agentic AI marks [16][17] a profound shift from traditional software automation toward systems capable 

of autonomous reasoning, adaptive planning, and multi-step decision-making. Unlike conventional machine learning 

models that respond to isolated queries, agentic systems operate over extended task horizons, continuously generating, 

refining, and consuming context. This context includes intent, observations, partial results, constraints, errors, and 

intermediate plans, all of which must persist throughout the lifecycle of a task. However, today’s enterprise environments  

dominated by stateless APIs, rigid schemas, and siloed integration mechanisms  are fundamentally mismatched with the 

cognitive demands of agentic workflows. The absence of a unified, context-aware interoperability layer forces agent 

frameworks to approximate continuity through proprietary memory buffers, heuristic serialization techniques, or repeated 

re-fetching of external data, resulting in brittle integrations, fragmented cognitive processes, and unnecessary operational 

overhead. 

Modern agentic frameworks [18][19] such as LangChain, LangGraph, AutoGen, Semantic Kernel, and various cloud-native 

agent systems attempt to manage contextual information internally, but these mechanisms remain isolated within the 

boundaries of each framework. As a result, context cannot be shared across agents built on different technologies, and 

workflows cannot span multiple ecosystems without cumbersome intermediation. Even within a single framework, context 

is often stored in ad hoc formats such as JSON dictionaries, scratchpads, or ephemeral memory objects that provide minimal 

guarantees regarding schema consistency, semantic interpretation, or long-term traceability. When multiple agents 

collaborate  such as a retrieval agent, a planning agent, and an execution agent  each must manually reinterpret the context 

left by others, introducing ambiguity, duplication, and the risk of semantic drift. 

These limitations are compounded by the inherent statelessness of enterprise APIs. While APIs are excellent for enforcing 

governance, security, and structured access, they do not retain any memory of prior calls and cannot infer the intent behind 

a sequence of requests. For agentic systems, this results in repetitive queries to reestablish state, misalignment between the 

agent’s evolving reasoning and API expectations, and the proliferation of orchestration logic to stitch together responses 

across multiple interactions. Agents must repeatedly reinterpret schema fields, reconstruct partial results, and correct for 

inconsistencies introduced by domain-specific API formats. This not only reduces the reliability of agentic workflows but 

also increases latency and increases the cognitive load on orchestration layers. 

The cognitive operational mismatch becomes even more pronounced in multi-agent scenarios, where collaboration requires 

a shared and evolving understanding of task semantics. Without a standardized context protocol, agents depend on brittle 

message-passing techniques or proprietary serialization formats. In practice, this means that two agents attempting to 

cooperate must independently reconcile schemas, align field definitions, and infer the meaning of shared data  all without 

the benefit of a consistent semantic layer. As tasks grow more complex, the risk of misinterpretation grows 

disproportionately, undermining the promise of agentic collaboration and severely limiting scalability. 

Governance and compliance concerns further amplify the challenge. Enterprise organizations operating in regulated 

industries  such as healthcare, finance, and public-sector operations  require stringent oversight of how data is accessed, 

transformed, and propagated. Traditional API governance [20] provides strong controls at the boundary of data access but 

offers no visibility into the reasoning steps or intermediate states generated by AI agents. This creates a transparency gap: 

while every API call can be audited, the cognitive chain that links those calls together remains opaque. Without a consistent 

mechanism for embedding policy constraints, consent rules, lineage metadata, and confidentiality markings into the agent’s 

reasoning process, enterprises cannot safely deploy autonomous systems at scale. 
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Fig. 2: Multi-Agent Collaboration Enabled by MCP 

The above Figure.2 diagram illustrate the multi-agent collaboration enabled by MCP. 

Taken together, these factors reveal a profound interoperability gap at the heart of agentic AI. APIs offer structural rigor 

but lack semantic continuity. Agent frameworks create local context but cannot share it across ecosystems. Multi-agent 

systems require a shared cognitive substrate that today does not exist. The result is an environment in which autonomous 

agents are constrained by integration bottlenecks, fragmented memory, ambiguous semantics, and insufficient governance. 

This gap underscores the need for a standardized, context-first interoperability layer  one that treats context as a governed, 

persistent, and semantically meaningful asset. The Model Context Protocol (MCP) is designed precisely to fulfill this role, 

enabling agentic AI systems to interact coherently, securely, and explainably with the complex enterprise environments in 

which they operate 

4. Proposed MCP–API Interoperability Framework 

The integration of agentic AI into enterprise systems requires more than the incremental enhancement of existing interfaces; 

it demands a fundamental rethinking of how autonomous reasoning processes interoperate with operational software 

infrastructures. The proposed MCP API Interoperability Framework addresses this need by combining the semantic 

continuity of the Model Context Protocol (MCP) with the governed, deterministic access model of enterprise APIs. Rather 

than displacing APIs, MCP augments them by providing the contextual substrate that APIs inherently lack. In this 

framework, APIs remain the authoritative gateway for data and functional access, while MCP supplies the semantic layer 

through which agents negotiate schemas, maintain cognitive state, and comply with governance constraints across multi-

step workflows. The resulting architecture enables an integrated environment in which autonomous agents can execute 

complex tasks coherently, securely, and transparently, even when interacting with heterogeneous systems. The table1 

illustrate the MCP vs API based dimensions as below. 
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Table 1. MCP vs API-Based Tool Invocation 

Dimension Traditional API MCP-Enhanced API 

Request Format Static JSON Context-enriched 

Understanding of Intent None Explicit metadata 

State Persistence None Full continuity 

Policy Enforcement Gateway-only Protocol-level 

Multi-Agent Support Not supported Native 

The framework is organized conceptually into three mutually reinforcing layers: the cognitive layer, the context protocol 

layer, and the enterprise service layer. The cognitive layer consists of the agentic components  LLMs, reasoning modules, 

planners, evaluators, and multi-agent orchestrators  that interpret user intent, generate goals, and break tasks into actionable 

steps. These cognitive processes produce a continuous stream of semantic information that must persist beyond individual 

model invocations. The context protocol layer, implemented through MCP, captures and propagates this evolving semantic 

state using durable context identifiers, schema manifests, and governance metadata. This layer acts as the semantic 

middleware that bridges the agent’s probabilistic reasoning with the deterministic execution environments of enterprise 

systems. The enterprise service layer comprises the APIs, microservices, databases, and third-party systems that supply the 

operational capabilities required by agent workflows. This layer enforces authentication, authorization, rate limits, and 

audit policies, ensuring that all agent actions adhere to organizational and regulatory requirements. 

 

Fig.3:  Context Lifecycle Under MCP 
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The Figure.3 illustrate the high level Lifecyle steps under MCP. 

The interaction among these layers unfolds through a structured flow of contextual information. Each task begins when an 

agent forms an initial intent, which is encapsulated into a context object containing the goal description, preliminary schema 

expectations, policy constraints, and a newly generated ContextID. This ContextID becomes the persistent anchor for the 

entire workflow. Before invoking any external systems, the agent engages in a schema negotiation process via MCP, during 

which the protocol assesses compatibility between the intended schema and the actual capabilities of the target APIs. This 

negotiation may involve iterative refinement, guided feedback, and reconciliation of semantic differences until a mutual 

alignment is achieved. Once aligned, the MCP layer enriches all API requests with contextual metadata that binds each 

invocation to the ongoing cognitive process. This enables APIs to participate indirectly in multi-step reasoning without 

requiring changes to their core interfaces. 

Responses from APIs are similarly contextualized. They are wrapped in MCP envelopes that include semantic annotations, 

provenance metadata, and updated context fragments. These enriched responses allow agents to incorporate deterministic 

information from external systems into their ongoing reasoning threads without losing semantic fidelity. When multiple 

agents collaborate on a task, the MCP layer ensures that they share a consistent view of the context, preserving continuity 

across distributed reasoning processes. This eliminates the fragmentation and ambiguity that typically arise in multi-agent 

workflows when context must be manually serialized, reinterpreted, and reconstructed. Additionally, MCP’s governance 

metadata ensures that sensitive data is always accessed and propagated in accordance with organizational policies, with 

every context update or decision logged for audit and replay. 

The framework not only supports continuity and semantic alignment but also introduces mechanisms for resilience and 

reliability. Contextual rollback allows agents to revert to earlier states when errors occur, and partial retry strategies ensure 

that failures in downstream systems do not corrupt the larger reasoning process. Furthermore, the framework enhances 

observability by capturing every agent decision, tool invocation, schema negotiation, and API interaction as part of an 

immutable context lineage. This lineage provides a detailed explanation trail that can be used for debugging, compliance 

verification, or reconstructing the reasoning path that led to a given output. 

5. Technical Considerations and Extended Design Principles 

Deploying the MCP–API Interoperability Framework in operational environments requires careful attention to context 

lifecycle management, schema evolution, performance, resilience, and compliance. While MCP introduces a powerful 

semantic layer, its effectiveness depends on how efficiently context is persisted, propagated, and governed across 

distributed systems. Context persistence is central to MCP’s value, as each task must maintain a unique ContextID that 

links all reasoning steps, tool invocations, and API interactions. This context must survive agent restarts, parallel 

workflows, and multi-agent collaboration while remaining retrievable for audit and replay. Implementing this persistence 

often involves distributed key–value stores, graph databases, or short-lived cache layers that can maintain context state 

with low latency. The technical architecture must also support dynamic schema alignment between MCP’s ContextSchema 

and traditional API specifications such as OpenAPI or OData. Rather than relying on static version-bound contracts, MCP 

enables schemas to evolve through iterative negotiation, reducing brittleness when APIs introduce new fields or deprecate 

old ones. The Table2 illustrate the MCP design principals and benefits shown below. 

Table 2. MCP Design Principles and Benefits 

Principle Description Benefit 

Context Persistence Long-lived ContextID tracks workflow state Eliminates fragmentation 

Schema Negotiation Dynamic, iterative schema alignment Reduces integration breakages 

Semantic Governance Policy + metadata embedded in messages Compliance and risk reduction 

Resilience & Rollback Stateful retry and recovery Fault tolerance in distributed systems 

Auditability Lineage, timestamps, provenance Explainable AI 
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Performance considerations are equally important, as embedding contextual metadata into every interaction can introduce 

overhead. To maintain responsiveness at scale, systems must apply optimizations such as delta-based context updates, 

parallel invocation pipelines for independent tasks, and binary serialization formats that minimize payload size. Persistent 

channels such as long-lived WebSocket or gRPC streams can also reduce latency by eliminating repetitive connection 

setup. Resilience mechanisms further strengthen the reliability of agentic workflows. MCP’s contextual rollback allows 

agents to revert to stable states when downstream errors occur, while partial retries and idempotent operations prevent data 

corruption across distributed steps. These resilience techniques ensure that failures do not disrupt the cognitive coherence 

of an ongoing task. 

Security and governance must be embedded directly into the protocol to meet enterprise and regulatory requirements. MCP 

supports token-bound authentication, role-based authorization, selective redaction, and policy propagation within its 

message structures. This allows enterprises to enforce data boundaries, protect sensitive information, and track every 

context transformation through immutable audit logs. Combined with ethical safeguards such as data minimization, consent 

enforcement, and explainability expectations, MCP ensures that agents operate not only intelligently but responsibly. The 

integration of these technical dimension’s context fidelity, schema flexibility, performance optimization, resilience, and 

governance are essential for realizing MCP’s promise as a scalable, safe, and enterprise-ready interoperability protocol. 

5.1 Use Case Scenarios   

The practical value of MCP becomes most evident when examined through real-world scenarios where traditional 

integrations struggle to support multi-step, context-driven reasoning. In enterprise analytics, for instance, a procurement 

agent may analyze supplier invoices from SAP Ariba while a finance compliance agent assesses risk and policy alignment. 

Without MCP, these agents would operate in silos, repeatedly querying APIs, reconstructing state from scratch, and 

manually aligning schemas across disparate systems. MCP resolves these limitations by enabling both agents to share a 

unified ContextID, semantically aligned invoice schemas, and a coherent sequence of contextual updates. This not only 

reduces redundant API calls but ensures that every decision is traceable and every data access governed. 

A second scenario emerges in multi-cloud orchestration, where organizations deploy workloads across AWS, Azure, and 

GCP. Traditional orchestration tools struggle to maintain consistent state across clouds, especially when failures or partial 

successes occur. MCP allows an orchestration agent to propagate a shared context graph across resource provisioning, 

quota checks, monitoring queries, and error-handling steps. The protocol ensures that state transitions remain consistent 

even as tasks span vendor ecosystems. Similarly, in scientific collaboration networks, autonomous agents handling 

literature review, data curation, and model development must exchange context-rich summaries, metadata, and results. 

MCP enables these agents to align schemas, annotate provenance, and maintain interoperability despite differences in 

institutional infrastructure or domain-specific ontologies. 

MCP also strengthens DevOps workflows by allowing agents to correlate build logs, test results, code changes, and 

deployment events under a single context identifier, improving the reliability of autonomous remediation or CI/CD 

automation. In customer support ecosystems, MCP harmonizes ticket schemas from tools such as ServiceNow, Zendesk, 

and Salesforce, allowing triage, routing, and resolution agents to collaborate effectively. Across all these scenarios, MCP 

transforms fragmented, tool-specific workflows into cohesive, context-driven processes with strong governance, reduced 

duplication, and enhanced reliability. These examples illustrate MCP’s broad applicability and its transformative potential 

across industries where autonomy, compliance, and interoperability are essential 

6. Discussion and Comparative Analysis 

A comparison of interoperability models reveals that MCP offers capabilities not found in traditional API infrastructures 

or existing agent frameworks. While APIs provide secure, deterministic access to enterprise systems, they lack the semantic 

continuity required for multi-step reasoning. Conversely, agent frameworks such as LangChain and Semantic Kernel offer 

context-handling mechanisms, but these are tightly coupled to their respective runtimes and do not provide cross-agent or 

cross-platform portability. OpenAI’s function calling and plugin architectures improve tool invocation but remain 

fundamentally stateless, lacking support for persistent context or schema negotiation. In contrast, MCP introduces a vendor-

neutral, context-first layer that enables rich, bidirectional communication among agents, tools, and enterprise systems. As 

shown below the table 3 illustrate the comparison of different models. 
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Table 3. Comparison of Interoperability Models 

Feature REST APIs GraphQL Plugins/FC LangChain/SK MCP (Proposed) 

Stateless Yes Yes Yes Partial No (Context-Persistent) 

Schema Flexibility Low Medium Low Medium High (Negotiated) 

Governance Built-In Gateway Gateway Minimal Minimal Embedded 

Multi-Agent Sharing No No No No Yes 

Provenance/Lineage Limited Limited None Limited Full 

Vendor Neutral Yes Yes No No Yes 

 

The strengths of MCP lie in its universality, governance-aware design, and ability to preserve context across distributed 

workflows. It enables multi-agent collaboration by providing a standardized semantic substrate and improves explainability 

through detailed context lineage. These features are essential for enterprise adoption, as they reduce orchestration overhead 

and promote operational transparency. However, MCP is still emerging as a standard, and widespread adoption will require 

collaboration across cloud providers, enterprise vendors, and AI framework developers. The protocol also introduces 

performance overhead due to context metadata, though this can be mitigated with optimized transports and delta-based 

updates. Despite these challenges, MCP’s architectural advantages position it as the most promising path toward scalable, 

trustworthy agentic interoperability. Its implications extend beyond enterprise automation into research collaborations, 

federated AI ecosystems, ethical AI governance, and multimodal integration—spaces where context continuity and 

semantic alignment are essential 

7. Limitations 

While the proposed MCP–API interoperability framework offers a significant advancement toward context-aware, multi-

agent integration, several limitations must be acknowledged to ensure balanced interpretation and guide future 

development. First, the introduction of context metadata and schema negotiation inherently introduces additional 

processing and communication overhead. MCP messages carry enriched semantic structures ContextIDs, governance 

directives, and schema descriptors that, while essential for reliable agent orchestration, can increase payload size and 

introduce modest latency in high-frequency or real-time workflows. Although optimizations such as delta encoding and 

binary serialization can mitigate these effects, MCP cannot fully match the raw efficiency of stateless API calls. 

Second, the effectiveness of MCP depends heavily on broad ecosystem participation. For MCP to serve as a universal 

interoperability layer, agent frameworks, enterprise platforms, and tool providers must adopt compatible message formats, 

schema descriptors, and governance semantics. In the current landscape, adoption remains nascent and uneven, limiting 

cross-vendor interoperability. This reinforces the need for open standards bodies and industry alliances to formalize MCP 

specifications and accelerate convergence. 

Third, MCP lacks a fully established formal standardization process today. While early implementations and open-source 

tooling demonstrate feasibility, the absence of stable protocol versions, security guarantees, compliance certifications, and 

cross-platform conformance tests may limit adoption in risk-sensitive industries. Standardization through IEEE, IETF, or 

W3C will be essential to ensuring long-term viability and interoperability. 

Finally, the protocol’s governance capabilities such as embedded policies, consent metadata, and context lineage introduce 

complexity in implementation. Organizations may require new infrastructure components, including context stores, policy 

decision points, and audit pipelines, to support the full MCP lifecycle. These requirements increase operational overhead 

and demand careful integration with existing security architectures, particularly in large enterprises with mature identity 

and access management systems. 

Despite these limitations, MCP represents a critical step toward the development of safe, explainable, and interoperable 

agentic AI systems. By acknowledging these constraints, this work provides a clearer pathway for future research and 

industry collaboration. 
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8. Future Work and Extensions 

As MCP gains adoption, several research and engineering directions will shape its evolution. One major frontier is 

multimodal context integration. Modern AI systems reason not only over text but over images, audio, video, and structured 

sensor data. Extending MCP’s ContextSchema to capture multimodal semantics will enable agents to propagate visual or 

auditory context across workflows and support tasks that combine perception and reasoning. Another promising direction 

involves integrating MCP with enterprise knowledge graphs and ontologies. By embedding context transitions into graph 

structures, organizations can achieve automated inference, semantic query optimization, and advanced provenance analysis 

across interconnected systems. 

Standardization represents a critical next step. Establishing formal MCP specifications through organizations such as IEEE, 

IETF, or W3C will accelerate tool interoperability and ensure long-term compatibility. This standardization could be 

complemented by open-source reference implementations, interoperability test suites, and cross-vendor working groups. 

MCP’s role within LLMOps pipelines also requires exploration, particularly in areas such as context-aware model 

deployment, continual validation, and policy-driven governance across the AI lifecycle. Ethical extensions, including 

accountability tokens, fairness annotations, and privacy tiering, will help ensure that context propagation remains safe and 

transparent. Finally, MCP may enable cross-organizational or federated AI ecosystems, where agents from different 

institutions collaborate without sharing raw data. This requires zero-trust context exchange mechanisms, policy negotiation 

protocols, and secure federated MCP brokers. The momentum of these research areas underscores MCP’s potential as a 

foundational layer for future AI interoperability. 

9. Conclusion 

The shift toward agentic AI exposes fundamental limitations in existing interoperability mechanisms, which rely heavily 

on stateless APIs, rigid schemas, and isolated reasoning frameworks. While APIs remain indispensable as the governed 

access layer for enterprise data and functionality, they cannot support the persistent, evolving context required by 

autonomous agents. The Model Context Protocol (MCP) addresses this gap by providing a unified, context-aware 

interoperability standard that enables agents to negotiate schemas dynamically, maintain cognitive continuity, and 

collaborate securely across heterogeneous systems. The MCP API Interoperability Framework proposed in this study 

demonstrates how MCP complements API infrastructures by introducing semantic governance, contextual lineage, and 

multi-agent coordination. 

Through technical analysis, architectural modeling, and practical scenarios, this work shows that MCP transforms 

interoperability from isolated data exchanges into a coherent semantic continuum that aligns cognitive reasoning with 

operational execution. As enterprises and research institutions increasingly adopt autonomous systems, MCP offers a 

scalable, explainable, and policy-compliant foundation capable of supporting complex workflows across diverse digital 

ecosystems. The protocol’s context-first design establishes a new interoperability paradigm  one essential for realizing the 

full potential of autonomous, trustworthy, and interconnected AI. 
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