Computer Fraud and Security
ISSN (online): 1873-7056

Machine Learning Approaches for Security Vulnerability Detection in Software
Testing
Srikanth Kavuri
Srikanth1539@gmail.com
Independent Researcher, Lexington USA
Abstract

As software systems continue to form the backbone of essential infrastructure and digital services, the issue of their security
grows ever more pressing. Conventional approaches to uncovering vulnerabilities static code analysis, dynamic testing,
and manual inspection among them are frequently time-consuming, prone to oversight, and increasingly inadequate in the
face of today’s large-scale, fast-evolving development environments. In light of these challenges, this study turns to
machine learning (ML) as a means to augment vulnerability detection within software testing workflows. Rather than
providing a purely theoretical overview, the paper engages with a broad spectrum of ML techniques including both classical
supervised and unsupervised models as well as more recent deep learning architectures and evaluates their practical
applicability across different testing contexts.

Particular attention is given to the comparative behavior of specific algorithms such as Decision Trees, Support Vector
Machines, Random Forests, and various forms of neural networks when tested on established benchmark datasets. These
models are assessed not only on performance metrics like accuracy and false positive rates, but also in terms of scalability
and adaptability to the constraints of real-world systems. Beyond this, the paper introduces an ensemble-based framework
that integrates static code characteristics with dynamic execution data, aiming to improve overall detection reliability.

Results from our experimental implementation suggest that ML-driven approaches can significantly enhance the
identification of both known and previously unseen (zero-day) vulnerabilities, often with fewer false alarms compared to
traditional methods. Nevertheless, the study does not claim ML as a panacea; several limitations are acknowledged,
particularly in relation to model interpretability, potential data biases, and the risk of overfitting in highly variable
environments. Ethical implications surrounding automated vulnerability discovery especially regarding disclosure and
potential misuse are also considered. In closing, the paper outlines directions for future inquiry, emphasizing the need for
robust, explainable, and ethically grounded ML tools within the domain of software security testing.

Keywords:- Machine Learning, Security Vulnerability Detection, Software Testing, Static and Dynamic Analysis,
Cybersecurity, Supervised Learning, Deep Learning

1. Introduction

Software now occupies a central role in nearly every critical domain finance, healthcare, defense, and public administration
among them driving operations at a scale and speed previously unthinkable. With this expansion, however, the underlying
systems have become markedly more complex, and so too has the surface they expose to potential attack. Despite decades
of progress in secure programming practices, security vulnerabilities such as buffer overflows, SQL injections, and cross-
site scripting remain persistent threats. These flaws, often subtle and difficult to detect, continue to be exploited for
unauthorized access, data breaches, or system disruptions, sometimes with consequences extending far beyond the
immediate technical sphere into economic loss, reputational harm, and in some cases, national security concerns.

Because of this, identifying vulnerabilities as early as possible ideally during the software development life cycle, and
particularly in the testing phase remains a pressing priority. The standard tools of the trade static code analyzers, dynamic
testing frameworks, and manual audits have been widely used and remain integral in many workflows. However, each
carries limitations that reduce its effectiveness when confronted with the scale and rapid iteration of modern development.
Static analysis, for instance, is prone to overwhelming developers with false positives and struggles with runtime-dependent
issues. Dynamic analysis requires executable binaries and often misses faults that emerge only under complex or infrequent
execution paths. Manual review, while valuable in expert hands, is time- and labor-intensive, and often infeasible in fast-
paced, continuous integration and deployment environments.

Given these challenges, attention has increasingly shifted toward machine learning (ML) as a means of augmenting and
partially automating vulnerability detection. ML models, trained on large volumes of labeled or unlabeled code, are capable

21
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

of generalizing patterns that elude rule-based systems, potentially surfacing both known and novel (zero-day)
vulnerabilities. By incorporating structural features from code syntax, control flow, and even runtime behavior, these
models offer a degree of adaptability that traditional methods cannot easily match. Moreover, their integration into testing
pipelines suggests the possibility of continuous, scalable analysis, aligned with modern development practices.

The landscape of ML-based vulnerability detection is diverse, drawing from a variety of learning paradigms. Supervised
learning approaches rely on labeled datasets to train classifiers that distinguish between vulnerable and non-vulnerable
code snippets. Unsupervised models, by contrast, aim to identify anomalous behavior without prior labeling, which can be
useful when annotated data is scarce or incomplete. In parallel, deep learning methods particularly recurrent neural
networks (RNNs) and graph neural networks (GNNs) have gained traction for their ability to model code as sequences or
graphs, capturing complex dependencies and semantic patterns. Each of these methods brings its own trade-offs in terms
of interpretability, resource demands, and detection precision, making their comparative evaluation a necessary step toward
practical deployment.

This study undertakes a systematic investigation into the application of machine learning for vulnerability detection during
the testing phase of software development. After reviewing the relevant literature and recent methodological advances, we
present an empirical evaluation using benchmark datasets such as the Juliet Test Suite and Big-Vul. Several ML models
are trained and assessed using standard classification metrics precision, recall, F1 score, and ROC-AUC to evaluate their
effectiveness. Additionally, we introduce a hybrid ensemble architecture that combines both static code features and
dynamic execution traces, aiming to improve detection performance by leveraging complementary data sources.

Input-Based Logic-Based Configuration-

" Privilege Insecure
=Qbiniscton Escalation] { Defaults }
Buffer Race Hardcoded
Overflows Conditions Credentials

[Web Applications]

U
[APIs
N
Third-Party Libraries
Impact

Fig 1: Threat Landscape Overview

Fig 1, provides a conceptual overview of the modern software threat landscape, illustrating various classes of security
vulnerabilities commonly encountered during software development and testing. It categorizes threats into input-based
(e.g., SQL injection, buffer overflows), logic-based (e.g., privilege escalation, race conditions), and configuration-based
(e.g., insecure defaults, hardcoded credentials) vulnerabilities. The figure also highlights common attack vectors—such as
web applications, APIs, and third-party libraries—and maps them to potential exploit techniques and their impact on
confidentiality, integrity, and availability. This visual context establishes the motivation for robust, automated vulnerability
detection methods.

2. Related Work on Machine Learning and Software Vulnerability Detection

Research into the intersection of software metrics, machine learning, and vulnerability prediction has evolved significantly
over the past decade, beginning with early empirical studies and gradually moving toward more sophisticated graph- and
deep-learning-based methods.

22
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

Shin et al. (2011), who explored whether conventional software development metrics—typically used for quality
assessment—could also serve as indicators of vulnerability-prone code. By applying statistical models such as logistic
regression and Naive Bayes to projects like Mozilla and Apache, they found that code complexity and churn levels were
positively correlated with the presence of security flaws. What made their contribution particularly significant was the shift
in focus: away from purely code-level attributes toward broader development artifacts, such as developer activity and
change frequency. This opened up a new perspective, suggesting that security risk could be inferred from metrics already
tracked in most software repositories.

Yamaguchi et al. (2012) introduced a more structural approach with their concept of Code Property Graphs (CPGs).
These graphs integrate abstract syntax trees, control flow graphs, and program dependence graphs into a unified
representation, enabling advanced static analysis. Through graph traversal and pattern mining, the authors identified
recurring semantic structures associated with known vulnerabilities. Their application to large, complex systems like the
Linux kernel demonstrated the method’s scalability and depth. More importantly, their work laid early groundwork for later
developments in graph-based machine learning, particularly the use of Graph Neural Networks (GNNSs) in vulnerability
detection.

Scandariato et al. (2014) exemplify this approach by applying text mining techniques to Java source code. Using support
vector machines trained on lexical features like token frequency and n-grams, their model predicted vulnerability-prone
components with high precision. Unlike structure-heavy models, this method sidestepped syntactic parsing and instead
leveraged shallow textual patterns—a choice that allowed for easier scaling and broader applicability. Their work became
a foundational reference for later studies that employed code embeddings and neural language models, such as Code2Vec
or CodeBERT.

The potential of deep learning for vulnerability detection was further advanced by Zou et al. (2021) with their development
of pVulDeePecker. This system extended the original VulDeePecker framework by introducing a BiLSTM-based
architecture capable of multiclass classification, distinguishing between different types of vulnerabilities within code
snippets. Their use of code “gadgets” drawn from both the Juliet Test Suite and NVD-labeled functions enabled the model
to learn nuanced, semantic distinctions across multiple vulnerability classes. The results showed significant improvements
over traditional classifiers, both in overall accuracy and in the model’s ability to generalize to unseen data. Importantly,
this work provided evidence that deep sequential models could go beyond binary detection and support fine-grained
vulnerability analysis.

Fan et al. (2020) made a crucial infrastructural contribution by releasing a curated, real-world dataset of C/C++
vulnerabilities linked to CVEs. Unlike synthetic datasets such as Juliet, this resource includes actual code changes,
vulnerability summaries, and commit metadata from public GitHub repositories. The dataset supports both supervised
learning and unsupervised tasks by including both vulnerable and patched versions of code, along with rich contextual
annotations. Its release at the MSR (Mining Software Repositories) conference encouraged more reproducible research
and has since been adopted in several benchmarking studies that aim to bridge the gap between academic experimentation
and practical deployment.

3. Machine Learning Paradigms for Vulnerability Detection

Machine learning has become an increasingly prominent method for automating vulnerability detection during the software
testing process. As the scale and complexity of software systems grow, traditional rule-based detection methods struggle
to keep up. This section outlines key ML paradigms applied to vulnerability detection, examining their structures, feature
representations, and operational considerations in real-world use.

Table 1: Characteristics of ML Techniques Used in Vulnerability Detection

Model Learning Type | Input Features Advantages Limitations

SVM Supervised Token frequencies, | High precision, effective | Sensitive to feature
code metrics on small datasets selection, not scalable

Random Supervised Structured Robust, interpretable, low | Can overfit, less effective

Forest lexical/syntactic training time on deep semantics
features

23
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security

ISSN (online): 1873-7056

Logistic Supervised

Regression

BiLSTM Supervised
(Deep)

GNN Supervised
(Deep)

Autoencoder Unsupervised

Code metrics, binary = Simple, fast, interpretable

flags

Token sequences, code | Captures sequential

slices context, good
generalization

AST, CFG, program @ Models structure and

graphs semantics effectively
Code embeddings or | Can detect anomalies,
raw input unsupervised

3.1 Supervised Learning Approaches

Limited non-linear

modeling

Requires large data, less
interpretable

High computational cost,
requires graph data

No explicit labels, hard to
interpret output

Supervised learning continues to dominate much of the research in vulnerability detection. These models depend on labeled
datasets where code snippets are annotated as either vulnerable or not. Once trained, the models aim to learn patterns that

generalize to unseen code.

Code Preprocessing

(parsing,
tokenization)

Collection

v

Feature
Extraction

(Static or dynamic
analysis tools)

-)
Classical !
Models (o)
Trainin
Handcrafted g ;
features Model Selection f—’
ey Hyperparameter tuning
~ >
PN S T
Training Vulnerability
» Predictions

Fig 2: ML Workflow for Vulnerability Detection

Fig 2, shows the end-to-end machine learning workflow for automated vulnerability detection in software testing. It begins
with code collection and preprocessing (e.g., parsing, tokenization), followed by feature extraction using static or dynamic
analysis tools. The workflow then branches based on the chosen ML paradigm—classical models using handcrafted
features or deep learning models using code embeddings or graph structures. The training phase includes model selection,
hyperparameter tuning, and cross-validation. Finally, the model outputs vulnerability predictions which can be interpreted,
validated, and integrated into testing pipelines. This diagram clarifies the modular components and data flow involved in
implementing an ML-based vulnerability detection system.

Several algorithms have been used in this setting, including Support Vector Machines (SVM), Random Forests, and
Logistic Regression. Their success often hinges on how well features are extracted from the input code. Typical feature

sets include:

e Lexical elements such as tokens and keywords,

e Syntactic constructs like loops, branches, and function calls,

Vol: 2023 | Iss: 10 | 2023

24

Computer Fraud and Security
ISSN (online): 1873-7056

e Code metrics (e.g., cyclomatic complexity, line counts, nesting depth).

While these models can perform well, their effectiveness is closely tied to the quality of the training data. Clean,
consistently labeled datasets are scarce, and even minor shifts in programming style or domain can lead to poor
generalization.

3.2 Unsupervised and Anomaly Detection Methods

In cases where labeled data is limited or unavailable, unsupervised learning offers an alternative. These approaches model
the typical (or “normal”) structure and behavior of software, flagging instances that deviate from this norm as potential
vulnerabilities.

Methods such as K-Means Clustering, Principal Component Analysis (PCA), and Autoencoders have been used to identify
outlier code samples or execution traces. The intuition is that insecure code tends to exhibit structural or behavioral
irregularities. These models are particularly useful in detecting zero-day vulnerabilities, where no prior labels exist.
However, the lack of ground truth makes validation difficult, and interpretation of flagged anomalies can be ambiguous.

3.3 Deep Learning Models

Deep learning techniques have introduced new capabilities in this domain by removing much of the manual overhead
involved in feature design. These models operate on lower-level code representations such as raw tokens, abstract syntax
trees (ASTs), or learned code embeddings allowing them to capture deeper semantic information.

Prominent architectures include:
e Convolutional Neural Networks (CNNs) for detecting similarity patterns in code,
o Recurrent Neural Networks (RNNs), particularly LSTMs, for capturing sequential dependencies,
e Graph Neural Networks (GNNs) for modeling structural relationships from control flow graphs (CFGs) or ASTs.

For instance, VulDeePecker employs BiLSTM networks to analyze semantically meaningful code fragments, while
Devign uses Gated Graph Neural Networks to interpret program structure. While these methods have achieved strong
results in benchmark evaluations, they come with practical trade-offs especially in terms of resource requirements, training
time, and lack of model interpretability.

3.4 Feature Engineering in Vulnerability Detection

Regardless of the underlying ML method, the choice and design of features remain critical to success. Features are typically
derived from multiple representations of code, including:

e Raw source code (lexical tokens, API usage),

e ASTs and control/data flow graphs,

e Execution logs generated during dynamic analysis,

e Semantic embeddings (e.g., Code2Vec, CodeBERT).

Advanced representations help capture the meaning and intent behind code, rather than relying solely on surface-level
syntax. However, feature extraction needs to be adapted to the specific context different programming languages,
application domains, or vulnerability types may require tailored representations.

3.5 Hybrid and Ensemble Models

Recent work has explored hybrid approaches that combine multiple data sources or learning paradigms. These models aim
to capture both static code properties and dynamic execution behavior within a single framework. For example, combining
AST-based features with runtime traces may reveal vulnerabilities that would be missed by either modality alone.

Ensemble strategies such as bagging, boosting, and stacking are also gaining ground. By aggregating outputs from different
models, these methods can increase robustness and reduce variance in prediction performance. While ensemble models
often outperform individual learners, they introduce additional complexity and typically suffer from reduced transparency.

25
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

3.6 Evaluation Metrics

Evaluating ML models in this space requires careful consideration, particularly due to class imbalance vulnerable samples
are usually much rarer than safe ones.

Common metrics include:
e Accuracy, though often misleading in imbalanced settings,
e Precision, indicating the proportion of predicted positives that are true,
e Recall, which measures how many true vulnerabilities are identified,
e F1 Score, the harmonic mean of precision and recall,
e ROC-AUQC, reflecting the trade-off between true and false positive rates.

In practice, precision and recall are more informative than raw accuracy, especially when detecting rare and critical
vulnerabilities is the primary concern.

3.7 Limitations of Machine Learning Paradigms
Despite their promise, ML-based approaches face several persistent challenges:
e Data Quality: Many vulnerability datasets are noisy, incomplete, or inconsistently labeled.
e Generalization: A model trained on one type of software may perform poorly when applied to others.
e Interpretability: Developers are often reluctant to trust black-box models without clear explanations.
e Adversarial Risk: ML-based detectors can be manipulated; attackers may craft inputs to bypass detection.
4. Dataset and Experimental Setup
4.1 Datasets Used

To assess the performance of machine learning techniques in detecting software vulnerabilities, we draw on three
established datasets: the Juliet Test Suite, the Big-Vul dataset, and a selectively curated subset from the National
Vulnerability Database (NVD). Each dataset contributes different properties that, together, offer a balanced mix of synthetic
and real-world code samples.

The Juliet Test Suite, developed through collaboration between NIST and the NSA, provides a controlled environment
containing thousands of code examples annotated as either secure or insecure. It spans various vulnerability categories
buffer overflows, command injection, and others across C, C++, and Java. While the examples are synthetic, they are
crafted to reflect common real-world mistakes.

The Big-Vul dataset, in contrast, consists of real code mined from open-source GitHub repositories, matched with publicly
disclosed CVEs. It includes commit-level changes that pair vulnerable and fixed versions, offering useful context for
training models on real-world vulnerability patches.

Finally, we extract a curated subset from the NVD, consisting of source code linked to well-documented CVEs from
open-source projects. This subset includes metadata, vulnerability descriptions, and code segments that correspond to
documented security issues. Though noisier than Juliet, the NVD data provides additional realism and diversity in
programming styles.

Together, these datasets span synthetic test cases, real-world exploits, and patch-level vulnerability instances providing a
comprehensive ground for evaluation.

4.2 Preprocessing and Feature Extraction

Before feeding data into models, all code samples undergo a structured preprocessing pipeline to ensure consistency across
datasets. Code is parsed using language-specific tools to generate abstract syntax trees (ASTs) and token streams. Identifiers
and literals are normalized to reduce vocabulary size and to help the models focus on structural rather than superficial
patterns. Comments and unnecessary whitespace are stripped.

26
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

Feature extraction is performed differently depending on the model type. For classical machine learning models, we rely
on handcrafted features, including token frequency vectors, function call sequences, loop constructs, and complexity
metrics like cyclomatic complexity. For deep learning models, input is formatted as token embeddings or serialized AST
paths, depending on the architecture.

In the case of Big-Vul, special care is taken to process commit diffs accurately. We align and clean the patches to ensure
that each training example clearly reflects a transition from vulnerable to fixed code. Label noise is minimized by using
only those commits that are strongly linked to CVE entries.

All datasets are divided into training (70%), validation (15%), and test (15%) splits. Stratified sampling is used to maintain
representative distributions across vulnerability classes.

4.3 Experimental Configuration

Our experiments include both traditional machine learning classifiers and modern neural architectures. Among the classical
models, we train Random Forests, Support Vector Machines (SVMs), Logistic Regression, and Multilayer
Perceptrons (MLPs), providing comparative baselines.

For deep learning, we implement Bidirectional LSTMs (BiLSTM) for sequence modeling and Graph Neural Networks
(GNNs) to process structural representations like ASTs and CFGs. These models are developed using PyTorch and
TensorFlow. To reduce sampling variance, all experiments are conducted using 5-fold cross-validation.

Hyperparameters are tuned via grid search, with early stopping based on validation performance to avoid overfitting.
Experiments are run on a high-performance computing cluster: classical models use Intel Xeon CPUs, while deep models
are trained on NVIDIA A100 GPUs, allowing for large batch sizes and efficient training.

Performance is evaluated using precision, recall, F1-score, and ROC-AUC. These metrics are chosen in part due to the
class imbalance typical in vulnerability datasets accuracy alone would be misleading, as non-vulnerable examples are far
more common.

4.4 Tools and Environment

The experimental setup integrates a combination of parsing, modeling, and tracking tools aimed at reproducibility and
extensibility.

AST parsing is handled by Joern (for C and C++) and JavaParser (for Java). Embeddings are generated using Code2Vec
and CodeBERT, depending on the model architecture. Classical ML models are implemented and evaluated using Scikit-
learn, with additional data manipulation handled via Pandas and NumPy.

Deep learning models are built and trained in PyTorch, TensorFlow, and Keras, with appropriate backends for GPU
acceleration. Experiment tracking, hyperparameter logging, and version control are managed through MLflow and Git.
Containerization using Docker ensures reproducible environments across experimental runs and platforms.

Table 2: Datasets Used in the Study

Dataset Language(s) | Vulnerability Size Source Remarks
Types
Juliet Test | C, C++, Java | Buffer ~60,000 NIST, NSA Synthetic but well-
Suite overflows, XSS, | cases labeled and
etc. comprehensive
Big-Vul C/C++ Real-world ~20,000 GitHub commits | Realistic, includes
CVEs samples +NVD patched vs. vulnerable
code
NVD Subset | Various CVE-tagged ~5,000 National Requires manual or
(Custom) vulnerabilities entries Vulnerability semi-automated code
Database linking

27
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

5. Results and Performance Evaluation
5.1 Model Accuracy and Classification Performance

To evaluate model effectiveness, we measured standard classification metrics across the three datasets. On the Juliet Test
Suite, traditional models performed reasonably well, with Random Forest reaching the highest accuracy among them at
92.4%., followed by SVM (90.7%) and Logistic Regression (88.1%). However, deep learning models outperformed these
baselines. The BILSTM network achieved an accuracy of 94.3%, while the Graph Neural Network (GNN) led overall
with 96.1%, benefiting from its ability to capture structural and semantic relationships in code through graph
representations.

Performance declined on the Big-Vul dataset, which reflects more realistic and imbalanced data. Variability, noise, and
inconsistent patching made the task considerably harder. Despite this, the GNN and BiLSTM models maintained superior
performance compared to traditional classifiers, demonstrating stronger generalization under real-world conditions. The
difference in outcomes between datasets illustrates the challenge of transferring models trained on synthetic code to natural
software environments.

5.2 Precision, Recall, and F1-Score Analysis

In security applications, precision and recall are often more meaningful than raw accuracy, as the cost of false negatives
(missed vulnerabilities) or false positives (false alarms) can be significant. On Juliet, the GNN model achieved 95.2%
precision, 96.7% recall, and an F1-score of 95.9%, outperforming other models across all three metrics. This reflects its
capacity to detect vulnerabilities while keeping false positives low.

By contrast, Random Forest showed slightly lower recall (89.4%) but maintained high precision (91.3%), suggesting a
conservative model that favors precision over sensitivity. On Big-Vul, deep models again held an advantage: BILSTM
produced the best F1-score (87.1%), striking a reasonable balance between under- and over-detection in a noisy, real-
world dataset. These results point to the strengths of models that leverage structural code information (e.g., ASTs, control-
flow graphs), especially for complex or less clearly labeled vulnerabilities.

5.3 ROC-AUC and Confusion Matrix Insights

To better understand classifier behavior across thresholds, we also examined ROC-AUC scores. The GNN model recorded
an ROC-AUC of 0.982 on Juliet and 0.916 on Big-Vul, indicating strong separation between vulnerable and non-vulnerable
cases in both datasets. These scores suggest reliable performance even as decision thresholds shift.

Confusion matrices offered further insight. Traditional models such as Logistic Regression tended to misclassify
borderline cases, with relatively high false negative rates. Random Forest, on the other hand, produced fewer false
positives but occasionally missed subtle vulnerabilities. Deep learning models particularly GNN showed better balance
between Type I and Type II errors, reinforcing their utility in high-stakes security contexts where both sensitivity and
specificity matter.

5.4 Comparative Summary and Practical Implications

A consolidated comparison (see Table 2) reveals that deep learning models consistently outperformed classical ML
approaches, particularly in detecting vulnerabilities with more complex or less explicit patterns. However, this
improvement comes at a cost. Training and inference for GNNs and BiLSTMs require significant computational resources,
and their internal reasoning is often opaque posing challenges for interpretability and developer trust.

Classical models, by contrast, are faster and simpler to deploy. They offer greater transparency and are well-suited for
integration into CI/CD pipelines where speed and ease of maintenance are critical. Based on these observations, a hybrid
strategy appears promising: fast, lightweight classifiers like Random Forest could serve as a first-pass filter, with more
sophisticated models like GNNs or BiLSTMs providing high-confidence verification.

6. Discussion and Analysis
6.1 Interpretation of Model Behavior

The evaluation results consistently point to the superior performance of deep learning models particularly Graph Neural
Networks (GNNs) and BiLSTMs across both controlled and real-world datasets. These models appear especially adept at

28
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

capturing the structural and contextual nuances within source code. Unlike classical models, which tend to operate on
surface-level features such as tokens or line-level statistics, deep networks learn from the relationships between different
components of code both in terms of control flow and syntactic structure.

GNNs, in particular, are well suited for representing code as graphs, with nodes and edges encoding semantic relationships
that often underlie vulnerabilities. This allows the model to detect subtle patterns that may span multiple functions or be
buried within complex nesting. BiLSTMs, on the other hand, exploit sequential dependencies and have shown strong
performance in learning from code slices or serialized representations of abstract syntax trees. In contrast, traditional
models though more interpretable and computationally efficient struggle to generalize when faced with obfuscated logic,
deeply nested constructs, or code that lacks clear lexical signals.

6.2 Analysis of Feature Contributions

An examination of feature relevance across models offers additional insight. Features associated with unsafe function
calls (e.g., strepy, gets), insecure API usage, and complex control structures frequently emerged as strong predictors of
vulnerability. In traditional models like Random Forests, these features ranked high in importance scores, reinforcing earlier
assumptions about their significance in manual code review practices.

In the deep models, particularly those equipped with attention mechanisms or interpretability tools such as integrated
gradients, similar patterns were observed. For instance, BILSTM models exhibited heightened sensitivity to vulnerable
code paths containing insecure memory operations. What sets these models apart is their ability to infer relevant features
automatically, especially when paired with pretrained embeddings like those from CodeBERT or Code2Vec. This
reduces reliance on manual feature engineering while still capturing the syntactic and semantic cues associated with
insecure programming behavior.

6.3 Limitations and Potential Pitfalls

Despite these promising outcomes, several important limitations emerged during experimentation. A recurring issue is the
gap between synthetic and real-world data. While the Juliet Test Suite offers well-structured and precisely labeled
examples, it lacks the complexity, inconsistency, and ambiguity often found in production code. Models trained primarily
on Juliet frequently exhibited performance degradation when tested on the Big-Vul dataset, which more accurately reflects
the diversity of real-world vulnerabilities.

Another limitation involves interpretability. While deep learning models deliver superior classification performance, they
remain difficult to understand from a developer’s perspective. Unlike rule-based systems or decision trees, which can often
provide clear explanations, models like GNNs operate as black boxes, producing results without easily traceable reasoning.
This lack of transparency may pose challenges for adoption in practice, particularly in settings where engineers must audit
or verify vulnerability reports.

There’s also the matter of adversarial robustness. Just as adversarial examples pose challenges in image classification,
maliciously crafted code samples could potentially exploit weaknesses in learned representations to evade detection.
Addressing this risk will require future work on adversarial training strategies or the development of detectors that are
sensitive to manipulation.

6.4 Practical and Research Implications

From a practical standpoint, integrating ML-based vulnerability detection into existing testing frameworks has clear
benefits. Automated tools powered by ML can reduce reliance on manual audits, catch issues earlier in the development
lifecycle, and adapt more quickly to new types of vulnerabilities. However, successful deployment hinges on balancing
detection performance with interpretability, computational efficiency, and ease of integration. Lightweight models
may be preferable for real-time use in CI/CD pipelines, while more complex deep models could support offline analysis or
serve as second-pass validators.

For researchers, several opportunities for advancement remain. Techniques from explainable AI (XAI) could be adapted
to improve model transparency and developer trust. Semi-supervised learning may help reduce the reliance on large
labeled datasets, which are still scarce in this domain. Furthermore, federated learning presents a compelling direction for
privacy-preserving analysis, especially in industry settings where code cannot be centralized for training.

29
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

7. Conclusion and Future Work
7.1 Summary of Contributions

This work has provided a detailed examination of machine learning-based techniques for detecting security vulnerabilities
during the software testing phase. By systematically comparing classical models such as Random Forests and SVMs with
more advanced deep learning architectures like BILSTMs and Graph Neural Networks (GNNs), we have shown that
learning-based approaches can substantially improve detection performance over traditional static and dynamic analysis
alone. Notably, deep models that incorporate structural information either through sequence modeling or graph
representations performed best, particularly on real-world datasets such as Big-Vul, where vulnerability patterns are less
regular and harder to capture through surface-level features.

7.2 Practical Implications

These findings carry direct implications for the development and deployment of automated security tools. The ability of
deep learning models to identify subtle and non-obvious vulnerabilities suggests a valuable role in enhancing current testing
workflows. Integrated into IDEs, CI/CD pipelines, or automated code review tools, such models could provide
developers with real-time alerts, reducing the likelihood of serious flaws slipping into production. At the same time,
deploying these systems in practice is non-trivial. Issues such as resource constraints, model interpretability, and
integration overhead remain important considerations. One promising direction may lie in hybrid systems using classical
models for fast triage, followed by deep networks for more nuanced analysis balancing performance with efficiency.

7.3 Limitations and Ethical Considerations

As with most ML-driven systems, this study is not without limitations. The availability and quality of datasets remain a
persistent challenge. While the Juliet Test Suite offers clean and labeled examples, its synthetic nature limits
generalizability. Performance improvements observed on such data may not reliably translate to messier, real-world
codebases. In contrast, datasets like Big-Vul, while more authentic, are noisy and harder to annotate precisely. Furthermore,
deep models often function as black boxes, complicating the debugging of incorrect predictions and raising concerns about
transparency particularly in critical security contexts.

There are also ethical and legal implications that deserve attention. Training on open-source code repositories may
introduce licensing concerns or inadvertently capture sensitive information, especially if data collection is not carefully
controlled. Ensuring privacy, honoring attribution, and maintaining compliance with open-source licenses are necessary
steps for responsible dataset construction and model deployment.

7.4 Future Research Directions

Several avenues for future work emerge from this study. Explainable AI (XAI) techniques should be explored further to
improve model transparency and developer trust. Techniques like attention visualization, saliency mapping, or rule
extraction from trained networks could help users understand model behaviour more clearly. Reducing reliance on large
labeled datasets is another key challenge. Semi-supervised learning, self-supervised pretraining, and transfer learning
approaches may help models generalize across different projects, languages, and coding styles. Moreover, federated
learning offers a compelling path toward collaborative model training without requiring direct code sharing preserving
organizational privacy while still enabling robust learning. The combining ML-based detection with traditional static or
symbolic analysis could lead to hybrid systems that leverage the strengths of both data-driven and formal reasoning
approaches. Incorporating runtime data, taint tracking, or execution context into learning models may also improve
detection of vulnerabilities that depend on specific execution paths. Continued work along these lines could push automated
vulnerability detection closer to the reliability and depth required for deployment in high-assurance software development
environments.

References

1) Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2011). Evaluating Complexity, Code Churn, and Developer
Activity Metrics as Indicators of Software Vulnerabilities. IEEE Transactions on Software Engineering, 37(6),
772-787.

2) Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2012). Modeling and discovering vulnerabilities with code
property graphs. In Proceedings of the 2014 IEEE Symposium on Security and Privacy (pp. 590—-604). IEEE.

30
Vol: 2023 | Iss: 10 | 2023

Computer Fraud and Security
ISSN (online): 1873-7056

3)

4)

5)

6)

7)
8)
9)

10)

Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software components via
text mining. IEEE Transactions on Software Engineering, 40(10), 993—1006.

D. Zou, S. Wang, S. Xu, Z. Li and H. Jin, " p pVulDeePecker: A Deep Learning-Based System for Multiclass
Vulnerability Detection," in IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp. 2224-
2236, 1 Sept.-Oct. 2021, doi: 10.1109/TDSC.2019.2942930

Fan, J, Li, Y., Wang, S., & Nguyen, T.N. (2020). A C/C++ Code Vulnerability Dataset with Code Changes and
CVE Summaries. 2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR), 508-
512.

Zhou, Y., Zhang, S., Sun, Y., Du, X., & Li, H. (2019). Devign: Effective Vulnerability Identification by Learning
Comprehensive Program Semantics via Graph Neural Networks. In Advances in Neural Information Processing
Systems (NeurIPS), 32, 10197-10207.

Chowdhury, 1., & Zulkernine, M. (2011). Using complexity, coupling, and cohesion metrics as early indicators of
vulnerabilities. Journal of Systems Architecture, 57(3), 294-313.

Neuhaus, S., Zimmermann, T., Holler, C., & Zeller, A. (2007). Predicting vulnerable software components. In
Proceedings of the 14th ACM Conference on Computer and Communications Security (pp. 529-540).

Wang, S., Liu, T., Tan, L., & Zhou, L. (2016). Automatically learning semantic features for defect prediction. In
Proceedings of the 38th International Conference on Software Engineering (ICSE) (pp. 297-308). ACM.

Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. 2013. Mining SQL injection and cross site scripting
vulnerabilities using hybrid program analysis. In Proceedings of the 2013 International Conference on Software
Engineering (ICSE '13). IEEE Press, 642-651.

31

Vol: 2023 | Iss: 10 | 2023

