
Computer Fraud and Security

ISSN (online): 1873-7056

__

21
Vol: 2023 | Iss: 10 | 2023

Machine Learning Approaches for Security Vulnerability Detection in Software

Testing

Srikanth Kavuri

Srikanth1539@gmail.com

Independent Researcher, Lexington USA

Abstract

As software systems continue to form the backbone of essential infrastructure and digital services, the issue of their security

grows ever more pressing. Conventional approaches to uncovering vulnerabilities static code analysis, dynamic testing,

and manual inspection among them are frequently time-consuming, prone to oversight, and increasingly inadequate in the

face of today’s large-scale, fast-evolving development environments. In light of these challenges, this study turns to

machine learning (ML) as a means to augment vulnerability detection within software testing workflows. Rather than

providing a purely theoretical overview, the paper engages with a broad spectrum of ML techniques including both classical

supervised and unsupervised models as well as more recent deep learning architectures and evaluates their practical

applicability across different testing contexts.

Particular attention is given to the comparative behavior of specific algorithms such as Decision Trees, Support Vector

Machines, Random Forests, and various forms of neural networks when tested on established benchmark datasets. These

models are assessed not only on performance metrics like accuracy and false positive rates, but also in terms of scalability

and adaptability to the constraints of real-world systems. Beyond this, the paper introduces an ensemble-based framework

that integrates static code characteristics with dynamic execution data, aiming to improve overall detection reliability.

Results from our experimental implementation suggest that ML-driven approaches can significantly enhance the

identification of both known and previously unseen (zero-day) vulnerabilities, often with fewer false alarms compared to

traditional methods. Nevertheless, the study does not claim ML as a panacea; several limitations are acknowledged,

particularly in relation to model interpretability, potential data biases, and the risk of overfitting in highly variable

environments. Ethical implications surrounding automated vulnerability discovery especially regarding disclosure and

potential misuse are also considered. In closing, the paper outlines directions for future inquiry, emphasizing the need for

robust, explainable, and ethically grounded ML tools within the domain of software security testing.

Keywords:- Machine Learning, Security Vulnerability Detection, Software Testing, Static and Dynamic Analysis,

Cybersecurity, Supervised Learning, Deep Learning

1. Introduction

Software now occupies a central role in nearly every critical domain finance, healthcare, defense, and public administration

among them driving operations at a scale and speed previously unthinkable. With this expansion, however, the underlying

systems have become markedly more complex, and so too has the surface they expose to potential attack. Despite decades

of progress in secure programming practices, security vulnerabilities such as buffer overflows, SQL injections, and cross-

site scripting remain persistent threats. These flaws, often subtle and difficult to detect, continue to be exploited for

unauthorized access, data breaches, or system disruptions, sometimes with consequences extending far beyond the

immediate technical sphere into economic loss, reputational harm, and in some cases, national security concerns.

Because of this, identifying vulnerabilities as early as possible ideally during the software development life cycle, and

particularly in the testing phase remains a pressing priority. The standard tools of the trade static code analyzers, dynamic

testing frameworks, and manual audits have been widely used and remain integral in many workflows. However, each

carries limitations that reduce its effectiveness when confronted with the scale and rapid iteration of modern development.

Static analysis, for instance, is prone to overwhelming developers with false positives and struggles with runtime-dependent

issues. Dynamic analysis requires executable binaries and often misses faults that emerge only under complex or infrequent

execution paths. Manual review, while valuable in expert hands, is time- and labor-intensive, and often infeasible in fast-

paced, continuous integration and deployment environments.

Given these challenges, attention has increasingly shifted toward machine learning (ML) as a means of augmenting and

partially automating vulnerability detection. ML models, trained on large volumes of labeled or unlabeled code, are capable

Computer Fraud and Security

ISSN (online): 1873-7056

__

22
Vol: 2023 | Iss: 10 | 2023

of generalizing patterns that elude rule-based systems, potentially surfacing both known and novel (zero-day)

vulnerabilities. By incorporating structural features from code syntax, control flow, and even runtime behavior, these

models offer a degree of adaptability that traditional methods cannot easily match. Moreover, their integration into testing

pipelines suggests the possibility of continuous, scalable analysis, aligned with modern development practices.

The landscape of ML-based vulnerability detection is diverse, drawing from a variety of learning paradigms. Supervised

learning approaches rely on labeled datasets to train classifiers that distinguish between vulnerable and non-vulnerable

code snippets. Unsupervised models, by contrast, aim to identify anomalous behavior without prior labeling, which can be

useful when annotated data is scarce or incomplete. In parallel, deep learning methods particularly recurrent neural

networks (RNNs) and graph neural networks (GNNs) have gained traction for their ability to model code as sequences or

graphs, capturing complex dependencies and semantic patterns. Each of these methods brings its own trade-offs in terms

of interpretability, resource demands, and detection precision, making their comparative evaluation a necessary step toward

practical deployment.

This study undertakes a systematic investigation into the application of machine learning for vulnerability detection during

the testing phase of software development. After reviewing the relevant literature and recent methodological advances, we

present an empirical evaluation using benchmark datasets such as the Juliet Test Suite and Big-Vul. Several ML models

are trained and assessed using standard classification metrics precision, recall, F1 score, and ROC-AUC to evaluate their

effectiveness. Additionally, we introduce a hybrid ensemble architecture that combines both static code features and

dynamic execution traces, aiming to improve detection performance by leveraging complementary data sources.

Fig 1: Threat Landscape Overview

Fig 1, provides a conceptual overview of the modern software threat landscape, illustrating various classes of security

vulnerabilities commonly encountered during software development and testing. It categorizes threats into input-based

(e.g., SQL injection, buffer overflows), logic-based (e.g., privilege escalation, race conditions), and configuration-based

(e.g., insecure defaults, hardcoded credentials) vulnerabilities. The figure also highlights common attack vectors—such as

web applications, APIs, and third-party libraries—and maps them to potential exploit techniques and their impact on

confidentiality, integrity, and availability. This visual context establishes the motivation for robust, automated vulnerability

detection methods.

2. Related Work on Machine Learning and Software Vulnerability Detection

Research into the intersection of software metrics, machine learning, and vulnerability prediction has evolved significantly

over the past decade, beginning with early empirical studies and gradually moving toward more sophisticated graph- and

deep-learning-based methods.

Computer Fraud and Security

ISSN (online): 1873-7056

__

23
Vol: 2023 | Iss: 10 | 2023

Shin et al. (2011), who explored whether conventional software development metrics—typically used for quality

assessment—could also serve as indicators of vulnerability-prone code. By applying statistical models such as logistic

regression and Naïve Bayes to projects like Mozilla and Apache, they found that code complexity and churn levels were

positively correlated with the presence of security flaws. What made their contribution particularly significant was the shift

in focus: away from purely code-level attributes toward broader development artifacts, such as developer activity and

change frequency. This opened up a new perspective, suggesting that security risk could be inferred from metrics already

tracked in most software repositories.

Yamaguchi et al. (2012) introduced a more structural approach with their concept of Code Property Graphs (CPGs).

These graphs integrate abstract syntax trees, control flow graphs, and program dependence graphs into a unified

representation, enabling advanced static analysis. Through graph traversal and pattern mining, the authors identified

recurring semantic structures associated with known vulnerabilities. Their application to large, complex systems like the

Linux kernel demonstrated the method’s scalability and depth. More importantly, their work laid early groundwork for later

developments in graph-based machine learning, particularly the use of Graph Neural Networks (GNNs) in vulnerability

detection.

Scandariato et al. (2014) exemplify this approach by applying text mining techniques to Java source code. Using support

vector machines trained on lexical features like token frequency and n-grams, their model predicted vulnerability-prone

components with high precision. Unlike structure-heavy models, this method sidestepped syntactic parsing and instead

leveraged shallow textual patterns—a choice that allowed for easier scaling and broader applicability. Their work became

a foundational reference for later studies that employed code embeddings and neural language models, such as Code2Vec

or CodeBERT.

The potential of deep learning for vulnerability detection was further advanced by Zou et al. (2021) with their development

of μVulDeePecker. This system extended the original VulDeePecker framework by introducing a BiLSTM-based

architecture capable of multiclass classification, distinguishing between different types of vulnerabilities within code

snippets. Their use of code “gadgets” drawn from both the Juliet Test Suite and NVD-labeled functions enabled the model

to learn nuanced, semantic distinctions across multiple vulnerability classes. The results showed significant improvements

over traditional classifiers, both in overall accuracy and in the model’s ability to generalize to unseen data. Importantly,

this work provided evidence that deep sequential models could go beyond binary detection and support fine-grained

vulnerability analysis.

Fan et al. (2020) made a crucial infrastructural contribution by releasing a curated, real-world dataset of C/C++

vulnerabilities linked to CVEs. Unlike synthetic datasets such as Juliet, this resource includes actual code changes,

vulnerability summaries, and commit metadata from public GitHub repositories. The dataset supports both supervised

learning and unsupervised tasks by including both vulnerable and patched versions of code, along with rich contextual

annotations. Its release at the MSR (Mining Software Repositories) conference encouraged more reproducible research

and has since been adopted in several benchmarking studies that aim to bridge the gap between academic experimentation

and practical deployment.

3. Machine Learning Paradigms for Vulnerability Detection

Machine learning has become an increasingly prominent method for automating vulnerability detection during the software

testing process. As the scale and complexity of software systems grow, traditional rule-based detection methods struggle

to keep up. This section outlines key ML paradigms applied to vulnerability detection, examining their structures, feature

representations, and operational considerations in real-world use.

Table 1: Characteristics of ML Techniques Used in Vulnerability Detection

Model Learning Type Input Features Advantages Limitations

SVM Supervised Token frequencies,

code metrics

High precision, effective

on small datasets

Sensitive to feature

selection, not scalable

Random

Forest

Supervised Structured

lexical/syntactic

features

Robust, interpretable, low

training time

Can overfit, less effective

on deep semantics

Computer Fraud and Security

ISSN (online): 1873-7056

__

24
Vol: 2023 | Iss: 10 | 2023

Logistic

Regression

Supervised Code metrics, binary

flags

Simple, fast, interpretable Limited non-linear

modeling

BiLSTM Supervised

(Deep)

Token sequences, code

slices

Captures sequential

context, good

generalization

Requires large data, less

interpretable

GNN Supervised

(Deep)

AST, CFG, program

graphs

Models structure and

semantics effectively

High computational cost,

requires graph data

Autoencoder Unsupervised Code embeddings or

raw input

Can detect anomalies,

unsupervised

No explicit labels, hard to

interpret output

3.1 Supervised Learning Approaches

Supervised learning continues to dominate much of the research in vulnerability detection. These models depend on labeled

datasets where code snippets are annotated as either vulnerable or not. Once trained, the models aim to learn patterns that

generalize to unseen code.

Fig 2: ML Workflow for Vulnerability Detection

Fig 2, shows the end-to-end machine learning workflow for automated vulnerability detection in software testing. It begins

with code collection and preprocessing (e.g., parsing, tokenization), followed by feature extraction using static or dynamic

analysis tools. The workflow then branches based on the chosen ML paradigm—classical models using handcrafted

features or deep learning models using code embeddings or graph structures. The training phase includes model selection,

hyperparameter tuning, and cross-validation. Finally, the model outputs vulnerability predictions which can be interpreted,

validated, and integrated into testing pipelines. This diagram clarifies the modular components and data flow involved in

implementing an ML-based vulnerability detection system.

Several algorithms have been used in this setting, including Support Vector Machines (SVM), Random Forests, and

Logistic Regression. Their success often hinges on how well features are extracted from the input code. Typical feature

sets include:

• Lexical elements such as tokens and keywords,

• Syntactic constructs like loops, branches, and function calls,

Computer Fraud and Security

ISSN (online): 1873-7056

__

25
Vol: 2023 | Iss: 10 | 2023

• Code metrics (e.g., cyclomatic complexity, line counts, nesting depth).

While these models can perform well, their effectiveness is closely tied to the quality of the training data. Clean,

consistently labeled datasets are scarce, and even minor shifts in programming style or domain can lead to poor

generalization.

3.2 Unsupervised and Anomaly Detection Methods

In cases where labeled data is limited or unavailable, unsupervised learning offers an alternative. These approaches model

the typical (or “normal”) structure and behavior of software, flagging instances that deviate from this norm as potential

vulnerabilities.

Methods such as K-Means Clustering, Principal Component Analysis (PCA), and Autoencoders have been used to identify

outlier code samples or execution traces. The intuition is that insecure code tends to exhibit structural or behavioral

irregularities. These models are particularly useful in detecting zero-day vulnerabilities, where no prior labels exist.

However, the lack of ground truth makes validation difficult, and interpretation of flagged anomalies can be ambiguous.

3.3 Deep Learning Models

Deep learning techniques have introduced new capabilities in this domain by removing much of the manual overhead

involved in feature design. These models operate on lower-level code representations such as raw tokens, abstract syntax

trees (ASTs), or learned code embeddings allowing them to capture deeper semantic information.

Prominent architectures include:

• Convolutional Neural Networks (CNNs) for detecting similarity patterns in code,

• Recurrent Neural Networks (RNNs), particularly LSTMs, for capturing sequential dependencies,

• Graph Neural Networks (GNNs) for modeling structural relationships from control flow graphs (CFGs) or ASTs.

For instance, VulDeePecker employs BiLSTM networks to analyze semantically meaningful code fragments, while

Devign uses Gated Graph Neural Networks to interpret program structure. While these methods have achieved strong

results in benchmark evaluations, they come with practical trade-offs especially in terms of resource requirements, training

time, and lack of model interpretability.

3.4 Feature Engineering in Vulnerability Detection

Regardless of the underlying ML method, the choice and design of features remain critical to success. Features are typically

derived from multiple representations of code, including:

• Raw source code (lexical tokens, API usage),

• ASTs and control/data flow graphs,

• Execution logs generated during dynamic analysis,

• Semantic embeddings (e.g., Code2Vec, CodeBERT).

Advanced representations help capture the meaning and intent behind code, rather than relying solely on surface-level

syntax. However, feature extraction needs to be adapted to the specific context different programming languages,

application domains, or vulnerability types may require tailored representations.

3.5 Hybrid and Ensemble Models

Recent work has explored hybrid approaches that combine multiple data sources or learning paradigms. These models aim

to capture both static code properties and dynamic execution behavior within a single framework. For example, combining

AST-based features with runtime traces may reveal vulnerabilities that would be missed by either modality alone.

Ensemble strategies such as bagging, boosting, and stacking are also gaining ground. By aggregating outputs from different

models, these methods can increase robustness and reduce variance in prediction performance. While ensemble models

often outperform individual learners, they introduce additional complexity and typically suffer from reduced transparency.

Computer Fraud and Security

ISSN (online): 1873-7056

__

26
Vol: 2023 | Iss: 10 | 2023

3.6 Evaluation Metrics

Evaluating ML models in this space requires careful consideration, particularly due to class imbalance vulnerable samples

are usually much rarer than safe ones.

Common metrics include:

• Accuracy, though often misleading in imbalanced settings,

• Precision, indicating the proportion of predicted positives that are true,

• Recall, which measures how many true vulnerabilities are identified,

• F1 Score, the harmonic mean of precision and recall,

• ROC-AUC, reflecting the trade-off between true and false positive rates.

In practice, precision and recall are more informative than raw accuracy, especially when detecting rare and critical

vulnerabilities is the primary concern.

3.7 Limitations of Machine Learning Paradigms

Despite their promise, ML-based approaches face several persistent challenges:

• Data Quality: Many vulnerability datasets are noisy, incomplete, or inconsistently labeled.

• Generalization: A model trained on one type of software may perform poorly when applied to others.

• Interpretability: Developers are often reluctant to trust black-box models without clear explanations.

• Adversarial Risk: ML-based detectors can be manipulated; attackers may craft inputs to bypass detection.

4. Dataset and Experimental Setup

4.1 Datasets Used

To assess the performance of machine learning techniques in detecting software vulnerabilities, we draw on three

established datasets: the Juliet Test Suite, the Big-Vul dataset, and a selectively curated subset from the National

Vulnerability Database (NVD). Each dataset contributes different properties that, together, offer a balanced mix of synthetic

and real-world code samples.

The Juliet Test Suite, developed through collaboration between NIST and the NSA, provides a controlled environment

containing thousands of code examples annotated as either secure or insecure. It spans various vulnerability categories

buffer overflows, command injection, and others across C, C++, and Java. While the examples are synthetic, they are

crafted to reflect common real-world mistakes.

The Big-Vul dataset, in contrast, consists of real code mined from open-source GitHub repositories, matched with publicly

disclosed CVEs. It includes commit-level changes that pair vulnerable and fixed versions, offering useful context for

training models on real-world vulnerability patches.

Finally, we extract a curated subset from the NVD, consisting of source code linked to well-documented CVEs from

open-source projects. This subset includes metadata, vulnerability descriptions, and code segments that correspond to

documented security issues. Though noisier than Juliet, the NVD data provides additional realism and diversity in

programming styles.

Together, these datasets span synthetic test cases, real-world exploits, and patch-level vulnerability instances providing a

comprehensive ground for evaluation.

4.2 Preprocessing and Feature Extraction

Before feeding data into models, all code samples undergo a structured preprocessing pipeline to ensure consistency across

datasets. Code is parsed using language-specific tools to generate abstract syntax trees (ASTs) and token streams. Identifiers

and literals are normalized to reduce vocabulary size and to help the models focus on structural rather than superficial

patterns. Comments and unnecessary whitespace are stripped.

Computer Fraud and Security

ISSN (online): 1873-7056

__

27
Vol: 2023 | Iss: 10 | 2023

Feature extraction is performed differently depending on the model type. For classical machine learning models, we rely

on handcrafted features, including token frequency vectors, function call sequences, loop constructs, and complexity

metrics like cyclomatic complexity. For deep learning models, input is formatted as token embeddings or serialized AST

paths, depending on the architecture.

In the case of Big-Vul, special care is taken to process commit diffs accurately. We align and clean the patches to ensure

that each training example clearly reflects a transition from vulnerable to fixed code. Label noise is minimized by using

only those commits that are strongly linked to CVE entries.

All datasets are divided into training (70%), validation (15%), and test (15%) splits. Stratified sampling is used to maintain

representative distributions across vulnerability classes.

4.3 Experimental Configuration

Our experiments include both traditional machine learning classifiers and modern neural architectures. Among the classical

models, we train Random Forests, Support Vector Machines (SVMs), Logistic Regression, and Multilayer

Perceptrons (MLPs), providing comparative baselines.

For deep learning, we implement Bidirectional LSTMs (BiLSTM) for sequence modeling and Graph Neural Networks

(GNNs) to process structural representations like ASTs and CFGs. These models are developed using PyTorch and

TensorFlow. To reduce sampling variance, all experiments are conducted using 5-fold cross-validation.

Hyperparameters are tuned via grid search, with early stopping based on validation performance to avoid overfitting.

Experiments are run on a high-performance computing cluster: classical models use Intel Xeon CPUs, while deep models

are trained on NVIDIA A100 GPUs, allowing for large batch sizes and efficient training.

Performance is evaluated using precision, recall, F1-score, and ROC-AUC. These metrics are chosen in part due to the

class imbalance typical in vulnerability datasets accuracy alone would be misleading, as non-vulnerable examples are far

more common.

4.4 Tools and Environment

The experimental setup integrates a combination of parsing, modeling, and tracking tools aimed at reproducibility and

extensibility.

AST parsing is handled by Joern (for C and C++) and JavaParser (for Java). Embeddings are generated using Code2Vec

and CodeBERT, depending on the model architecture. Classical ML models are implemented and evaluated using Scikit-

learn, with additional data manipulation handled via Pandas and NumPy.

Deep learning models are built and trained in PyTorch, TensorFlow, and Keras, with appropriate backends for GPU

acceleration. Experiment tracking, hyperparameter logging, and version control are managed through MLflow and Git.

Containerization using Docker ensures reproducible environments across experimental runs and platforms.

Table 2: Datasets Used in the Study

Dataset Language(s) Vulnerability

Types

Size Source Remarks

Juliet Test

Suite

C, C++, Java Buffer

overflows, XSS,

etc.

~60,000

cases

NIST, NSA Synthetic but well-

labeled and

comprehensive

Big-Vul C/C++ Real-world

CVEs

~20,000

samples

GitHub commits

+ NVD

Realistic, includes

patched vs. vulnerable

code

NVD Subset

(Custom)

Various CVE-tagged

vulnerabilities

~5,000

entries

National

Vulnerability

Database

Requires manual or

semi-automated code

linking

Computer Fraud and Security

ISSN (online): 1873-7056

__

28
Vol: 2023 | Iss: 10 | 2023

5. Results and Performance Evaluation

5.1 Model Accuracy and Classification Performance

To evaluate model effectiveness, we measured standard classification metrics across the three datasets. On the Juliet Test

Suite, traditional models performed reasonably well, with Random Forest reaching the highest accuracy among them at

92.4%, followed by SVM (90.7%) and Logistic Regression (88.1%). However, deep learning models outperformed these

baselines. The BiLSTM network achieved an accuracy of 94.3%, while the Graph Neural Network (GNN) led overall

with 96.1%, benefiting from its ability to capture structural and semantic relationships in code through graph

representations.

Performance declined on the Big-Vul dataset, which reflects more realistic and imbalanced data. Variability, noise, and

inconsistent patching made the task considerably harder. Despite this, the GNN and BiLSTM models maintained superior

performance compared to traditional classifiers, demonstrating stronger generalization under real-world conditions. The

difference in outcomes between datasets illustrates the challenge of transferring models trained on synthetic code to natural

software environments.

5.2 Precision, Recall, and F1-Score Analysis

In security applications, precision and recall are often more meaningful than raw accuracy, as the cost of false negatives

(missed vulnerabilities) or false positives (false alarms) can be significant. On Juliet, the GNN model achieved 95.2%

precision, 96.7% recall, and an F1-score of 95.9%, outperforming other models across all three metrics. This reflects its

capacity to detect vulnerabilities while keeping false positives low.

By contrast, Random Forest showed slightly lower recall (89.4%) but maintained high precision (91.3%), suggesting a

conservative model that favors precision over sensitivity. On Big-Vul, deep models again held an advantage: BiLSTM

produced the best F1-score (87.1%), striking a reasonable balance between under- and over-detection in a noisy, real-

world dataset. These results point to the strengths of models that leverage structural code information (e.g., ASTs, control-

flow graphs), especially for complex or less clearly labeled vulnerabilities.

5.3 ROC-AUC and Confusion Matrix Insights

To better understand classifier behavior across thresholds, we also examined ROC-AUC scores. The GNN model recorded

an ROC-AUC of 0.982 on Juliet and 0.916 on Big-Vul, indicating strong separation between vulnerable and non-vulnerable

cases in both datasets. These scores suggest reliable performance even as decision thresholds shift.

Confusion matrices offered further insight. Traditional models such as Logistic Regression tended to misclassify

borderline cases, with relatively high false negative rates. Random Forest, on the other hand, produced fewer false

positives but occasionally missed subtle vulnerabilities. Deep learning models particularly GNN showed better balance

between Type I and Type II errors, reinforcing their utility in high-stakes security contexts where both sensitivity and

specificity matter.

5.4 Comparative Summary and Practical Implications

A consolidated comparison (see Table 2) reveals that deep learning models consistently outperformed classical ML

approaches, particularly in detecting vulnerabilities with more complex or less explicit patterns. However, this

improvement comes at a cost. Training and inference for GNNs and BiLSTMs require significant computational resources,

and their internal reasoning is often opaque posing challenges for interpretability and developer trust.

Classical models, by contrast, are faster and simpler to deploy. They offer greater transparency and are well-suited for

integration into CI/CD pipelines where speed and ease of maintenance are critical. Based on these observations, a hybrid

strategy appears promising: fast, lightweight classifiers like Random Forest could serve as a first-pass filter, with more

sophisticated models like GNNs or BiLSTMs providing high-confidence verification.

6. Discussion and Analysis

6.1 Interpretation of Model Behavior

The evaluation results consistently point to the superior performance of deep learning models particularly Graph Neural

Networks (GNNs) and BiLSTMs across both controlled and real-world datasets. These models appear especially adept at

Computer Fraud and Security

ISSN (online): 1873-7056

__

29
Vol: 2023 | Iss: 10 | 2023

capturing the structural and contextual nuances within source code. Unlike classical models, which tend to operate on

surface-level features such as tokens or line-level statistics, deep networks learn from the relationships between different

components of code both in terms of control flow and syntactic structure.

GNNs, in particular, are well suited for representing code as graphs, with nodes and edges encoding semantic relationships

that often underlie vulnerabilities. This allows the model to detect subtle patterns that may span multiple functions or be

buried within complex nesting. BiLSTMs, on the other hand, exploit sequential dependencies and have shown strong

performance in learning from code slices or serialized representations of abstract syntax trees. In contrast, traditional

models though more interpretable and computationally efficient struggle to generalize when faced with obfuscated logic,

deeply nested constructs, or code that lacks clear lexical signals.

6.2 Analysis of Feature Contributions

An examination of feature relevance across models offers additional insight. Features associated with unsafe function

calls (e.g., strcpy, gets), insecure API usage, and complex control structures frequently emerged as strong predictors of

vulnerability. In traditional models like Random Forests, these features ranked high in importance scores, reinforcing earlier

assumptions about their significance in manual code review practices.

In the deep models, particularly those equipped with attention mechanisms or interpretability tools such as integrated

gradients, similar patterns were observed. For instance, BiLSTM models exhibited heightened sensitivity to vulnerable

code paths containing insecure memory operations. What sets these models apart is their ability to infer relevant features

automatically, especially when paired with pretrained embeddings like those from CodeBERT or Code2Vec. This

reduces reliance on manual feature engineering while still capturing the syntactic and semantic cues associated with

insecure programming behavior.

6.3 Limitations and Potential Pitfalls

Despite these promising outcomes, several important limitations emerged during experimentation. A recurring issue is the

gap between synthetic and real-world data. While the Juliet Test Suite offers well-structured and precisely labeled

examples, it lacks the complexity, inconsistency, and ambiguity often found in production code. Models trained primarily

on Juliet frequently exhibited performance degradation when tested on the Big-Vul dataset, which more accurately reflects

the diversity of real-world vulnerabilities.

Another limitation involves interpretability. While deep learning models deliver superior classification performance, they

remain difficult to understand from a developer’s perspective. Unlike rule-based systems or decision trees, which can often

provide clear explanations, models like GNNs operate as black boxes, producing results without easily traceable reasoning.

This lack of transparency may pose challenges for adoption in practice, particularly in settings where engineers must audit

or verify vulnerability reports.

There’s also the matter of adversarial robustness. Just as adversarial examples pose challenges in image classification,

maliciously crafted code samples could potentially exploit weaknesses in learned representations to evade detection.

Addressing this risk will require future work on adversarial training strategies or the development of detectors that are

sensitive to manipulation.

6.4 Practical and Research Implications

From a practical standpoint, integrating ML-based vulnerability detection into existing testing frameworks has clear

benefits. Automated tools powered by ML can reduce reliance on manual audits, catch issues earlier in the development

lifecycle, and adapt more quickly to new types of vulnerabilities. However, successful deployment hinges on balancing

detection performance with interpretability, computational efficiency, and ease of integration. Lightweight models

may be preferable for real-time use in CI/CD pipelines, while more complex deep models could support offline analysis or

serve as second-pass validators.

For researchers, several opportunities for advancement remain. Techniques from explainable AI (XAI) could be adapted

to improve model transparency and developer trust. Semi-supervised learning may help reduce the reliance on large

labeled datasets, which are still scarce in this domain. Furthermore, federated learning presents a compelling direction for

privacy-preserving analysis, especially in industry settings where code cannot be centralized for training.

Computer Fraud and Security

ISSN (online): 1873-7056

__

30
Vol: 2023 | Iss: 10 | 2023

7. Conclusion and Future Work

7.1 Summary of Contributions

This work has provided a detailed examination of machine learning-based techniques for detecting security vulnerabilities

during the software testing phase. By systematically comparing classical models such as Random Forests and SVMs with

more advanced deep learning architectures like BiLSTMs and Graph Neural Networks (GNNs), we have shown that

learning-based approaches can substantially improve detection performance over traditional static and dynamic analysis

alone. Notably, deep models that incorporate structural information either through sequence modeling or graph

representations performed best, particularly on real-world datasets such as Big-Vul, where vulnerability patterns are less

regular and harder to capture through surface-level features.

7.2 Practical Implications

These findings carry direct implications for the development and deployment of automated security tools. The ability of

deep learning models to identify subtle and non-obvious vulnerabilities suggests a valuable role in enhancing current testing

workflows. Integrated into IDEs, CI/CD pipelines, or automated code review tools, such models could provide

developers with real-time alerts, reducing the likelihood of serious flaws slipping into production. At the same time,

deploying these systems in practice is non-trivial. Issues such as resource constraints, model interpretability, and

integration overhead remain important considerations. One promising direction may lie in hybrid systems using classical

models for fast triage, followed by deep networks for more nuanced analysis balancing performance with efficiency.

7.3 Limitations and Ethical Considerations

As with most ML-driven systems, this study is not without limitations. The availability and quality of datasets remain a

persistent challenge. While the Juliet Test Suite offers clean and labeled examples, its synthetic nature limits

generalizability. Performance improvements observed on such data may not reliably translate to messier, real-world

codebases. In contrast, datasets like Big-Vul, while more authentic, are noisy and harder to annotate precisely. Furthermore,

deep models often function as black boxes, complicating the debugging of incorrect predictions and raising concerns about

transparency particularly in critical security contexts.

There are also ethical and legal implications that deserve attention. Training on open-source code repositories may

introduce licensing concerns or inadvertently capture sensitive information, especially if data collection is not carefully

controlled. Ensuring privacy, honoring attribution, and maintaining compliance with open-source licenses are necessary

steps for responsible dataset construction and model deployment.

7.4 Future Research Directions

Several avenues for future work emerge from this study. Explainable AI (XAI) techniques should be explored further to

improve model transparency and developer trust. Techniques like attention visualization, saliency mapping, or rule

extraction from trained networks could help users understand model behaviour more clearly. Reducing reliance on large

labeled datasets is another key challenge. Semi-supervised learning, self-supervised pretraining, and transfer learning

approaches may help models generalize across different projects, languages, and coding styles. Moreover, federated

learning offers a compelling path toward collaborative model training without requiring direct code sharing preserving

organizational privacy while still enabling robust learning. The combining ML-based detection with traditional static or

symbolic analysis could lead to hybrid systems that leverage the strengths of both data-driven and formal reasoning

approaches. Incorporating runtime data, taint tracking, or execution context into learning models may also improve

detection of vulnerabilities that depend on specific execution paths. Continued work along these lines could push automated

vulnerability detection closer to the reliability and depth required for deployment in high-assurance software development

environments.

References

1) Shin, Y., Meneely, A., Williams, L., & Osborne, J. A. (2011). Evaluating Complexity, Code Churn, and Developer

Activity Metrics as Indicators of Software Vulnerabilities. IEEE Transactions on Software Engineering, 37(6),

772–787.

2) Yamaguchi, F., Golde, N., Arp, D., & Rieck, K. (2012). Modeling and discovering vulnerabilities with code

property graphs. In Proceedings of the 2014 IEEE Symposium on Security and Privacy (pp. 590–604). IEEE.

Computer Fraud and Security

ISSN (online): 1873-7056

__

31
Vol: 2023 | Iss: 10 | 2023

3) Scandariato, R., Walden, J., Hovsepyan, A., & Joosen, W. (2014). Predicting vulnerable software components via

text mining. IEEE Transactions on Software Engineering, 40(10), 993–1006.

4) D. Zou, S. Wang, S. Xu, Z. Li and H. Jin, " μ μVulDeePecker: A Deep Learning-Based System for Multiclass

Vulnerability Detection," in IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 5, pp. 2224-

2236, 1 Sept.-Oct. 2021, doi: 10.1109/TDSC.2019.2942930

5) Fan, J., Li, Y., Wang, S., & Nguyen, T.N. (2020). A C/C++ Code Vulnerability Dataset with Code Changes and

CVE Summaries. 2020 IEEE/ACM 17th International Conference on Mining Software Repositories (MSR), 508-

512.

6) Zhou, Y., Zhang, S., Sun, Y., Du, X., & Li, H. (2019). Devign: Effective Vulnerability Identification by Learning

Comprehensive Program Semantics via Graph Neural Networks. In Advances in Neural Information Processing

Systems (NeurIPS), 32, 10197–10207.

7) Chowdhury, I., & Zulkernine, M. (2011). Using complexity, coupling, and cohesion metrics as early indicators of

vulnerabilities. Journal of Systems Architecture, 57(3), 294–313.

8) Neuhaus, S., Zimmermann, T., Holler, C., & Zeller, A. (2007). Predicting vulnerable software components. In

Proceedings of the 14th ACM Conference on Computer and Communications Security (pp. 529–540).

9) Wang, S., Liu, T., Tan, L., & Zhou, L. (2016). Automatically learning semantic features for defect prediction. In

Proceedings of the 38th International Conference on Software Engineering (ICSE) (pp. 297–308). ACM.

10) Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. 2013. Mining SQL injection and cross site scripting

vulnerabilities using hybrid program analysis. In Proceedings of the 2013 International Conference on Software

Engineering (ICSE '13). IEEE Press, 642–651.

