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Abstract—Harnessing Al systems with adversarial attacks has turned out to be an issue of urgent concern
as machine learning models continue to work in high-stakes settings. This research suggests an alternative
and all-in-one adversarial defense, which incorporates safe data preprocessing, CNN-based feature
extraction, and iterative adversarial retraining to improve the robustness and reliability of the model. The
framework is tested on the MNIST data set and also includes adversarial samples created by using FGSM,
PGD, BIM, and C&W. The retraining cycle allows the network to acquire more stable decision boundaries
by repeatedly exposing the model to changing perturbations and helping to counter weaknesses both on white
and gray-box threat conditions. Experimental findings indicate a great increment of robustness, accuracy
upgrades between 7% and over 97% following retraining across all types of attack. The model is clean with
an accuracy of 99.1 %, and it performs better than the current methods, including conventional adversarial
training and AEDPL-DL. Comparative evaluation proves the fact that iterative retraining of adversarial
models is more resilient to data poisoning, evasion, and gradient-based attacks. The suggested solution
represents a promising avenue for creating secure, attack-deterrent, and trustworthy machine learning
systems that are applicable in the real world.
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I. INTRODUCTION

Al and ML have been integrated into the new digital ecosystem in the form of the backbone of the contemporary
healthcare diagnostics application, financial analytics, cybersecurity monitoring, autonomous transportation, and massive
enterprise-level systems [1]. Their ability to handle complex information, identify latent trends, and provide quick and
automatic determination of information has made them valuable assets in a high-stakes operational setting. The stable and
reliable operation of models as an organization leans more on Al-driven systems to guarantee accuracy, efficiency, and
reliability, which has become a pressing need to ensure safety, economic stability, and continuity of services [2].

Although effective when the conditions are standard, ML models are extremely vulnerable to adversarial interference.
Tiny, well-designed perturbations, which may be completely invisible to human perceptions, can cause large
misclassification of otherwise correct models [3], [4]. The Fast Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), Basic Iterative Method (BIM), and Carlini and Wagner (C&W) attack are examples of well-known adversarial attack
strategies that exploit gradient-sensitive design flaws to achieve significant failures [5]. Medical imaging classifiers can be
misled, or fraud detectors bypassed, or autonomous vehicles may be affected by these attacks to alter perceptions of traffic
signs [6], [7]. These vulnerabilities are potentially very dangerous, showing that even state-of-the-art classifiers can be
compromised in adversarial conditions.

The standard training processes have not been trained to be resistant to these targeted disorders [8]. There is a
considerable difference in robustness of security-sensitive models when adversarial manipulated inputs are presented to
models trained on a clean distribution only, showing a major gap in generalization [9]. Current methods offer partial defines
but are often limited in scale, attack-modes, and attack modes, and more holistic and versatile defensive methods are required.

To solve this issue, the current article proposes a framework of adversarial defines that combines secure pre-processing,
a CNN-based classification model, and adversarial retraining. The framework would reinforce decision boundaries through
the creation of controlled adversarial samples and embed the samples into several training cycles, which makes it resilient
to both white-box and Gray-box attacks [10]. It is expected to establish a defines mechanism that maintains high clean
accuracy but with substantially greater resistance to a variety of adversarial perturbations, and so enables the use of Al
systems in mission-critical settings with greater reliability and security.
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A. Motivation and Contribution of the Paper

With Al-powered systems fully integrating into the stakes of various areas like healthcare diagnostics, financial safety,
biometrics, and automated navigation, the issue of reliability in adverse settings has been a major concern. Even the slightest,
indistinguishable changes can cause machine learning models to misclassify their inputs, undermine safety measures, and
be maliciously exploited. Traditional defensive mechanisms tend to be reactive and insufficient to scale to new attack vectors,
and leave the state-of-the-art ML pipeline vulnerable to advanced adversarial manipulation. This increasing weakness
encourages the necessity of smart, adaptive, and strong defense systems that can withstand various threat conditions. To
sustain the trust, guarantee the operational stability, and maintenance of safe deployment of Al systems in the environment
where accuracy and security should be provided simultaneously, it would be vital to improve adversarial resilience. The
major contributions of the paper are as follows:

e Use of a well-curated and structured dataset to simulate clean inputs and generate adversarial samples systematically
by having a controlled assessment of vulnerabilities to the model in a variety of threat cases.

e Creating an end-to-end data processing pipeline with functionalities such as normalization, sensitive pre-processing,
and generation of adversarial perturbations to prepare the data to be used to train a robust model.

e Combining a CNN-based classification model as the main learner and making it more resilient by retraining it via the
adversarial method iteratively.

e Adopting an adaptive adversarial retraining mechanism, which involves the use of adversarial samples across several
training steps, can achieve learning stability on decision boundaries and enhance resilience.

e Assessing model resilience to both simple and highly advanced perturbations by observing model performance on
various adversarial attacks, including FGSM, PGD, BIM, and CW.

e Comparison of the suggested method to the existing techniques and proving better clean accuracy and much higher
adversarial robustness.

B. Justification and Novelty of the Paper

The article is supported by the fact that quick, reliable Al systems that resist advanced, adaptive, adversarial threats are
urgently needed. This study presents a dynamic iterative retraining process as opposed to the traditional training processes,
which depend on fixed adversarial samples, and as such, new adversarial samples emerge and are included throughout,
preserving robustness in a continuously evolving fashion. The novelty lies in the fact that clean, noisy, and multi-attack
samples are combined into one training loop that has a robustness threshold, which results in a stable performance regardless
of the type of attack. This multi-layered upgrading of the existing defense strategies offers greater generalization and
enhanced resilience.

C. Structure of the Paper

The paper will be organized in the following way: Section II will provide a review of the current studies. Section II1
describes the suggested methodology, which consists of the dataset preparation, secure preprocessing, and architecture
design. Section IV includes the experimental configuration, assessments, and comparison outcomes in several scenarios of
adversarial attacks. The final section of Section V finishes with an overview of the main findings and future research
prospects.

II. LITERATURE REVIEW

Adversarial attacks threaten the AI system's reliability. Recent research examines various defense mechanisms,
exploiting machine learning methods to identify, reduce, and respond to cyber threats to prove dependable and reliable smart
systems.

Sanapala, Lavanya (2024) introduces the ML Filter, which is a new method that incorporates the aspects of security in
machine learning so as to detect and eliminate the known and unknown threats efficiently. The Statistical Perturbation
Bounds Identification Algorithm and the ML-Filter Detection Algorithm are used to assess if a dataset is contaminated. The
data is divided using DBSCAN so that an algorithm can analyze it. The research considers its performance through the True
Positive Rate, significance test accuracy, which the performance of detection depends on the perturbation size and not on
the dataset or the ML models used. ML Filter is also able to detect known attacks with a rate of 99.63% and a generalized
rate of 98%, which shows that there is a lot of progress in machine learning and deep learning algorithms [11].

Villegas-Ch et al. (2024) evaluated the VGG16 image classification model's resistance and adverse example creation.
To assess the impact on the classification accuracy, they employed techniques to attack the original images, such as the
Carlini and Wagner attack, the Projected Gradient Descent method, and the Fast Gradient Sign method. Because the average
accuracy decreased by 25% when attacked by the Fast Gradient Sign and Projected Gradient Descent assaults and by 35%
when attacked using the Carlini and Wagner approach, the study found that the VGG16 model was vulnerable to adversarial
cases. As potential defences against these hostile threats, picture manipulation techniques like noise reduction, image
compression, and Gaussian blurring were also investigated [12].

Wibawa (2023) examines the security concerns and attacks on Al systems as adversarial threats. The study is based on
Al models simulating and testing their robustness using Python programming and libraries like Clever Hans, which is suited
to evaluate Al security. The authors point out that any little tampering in the input data can have severe impacts on Al
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predictions, as the FGSM model shows such a sharp decline in accuracy of approximately 66% at epsilon of 0.1 when
attacked. These vulnerabilities are important to understand in order to protect the progress of Al technology. Through a
thorough insight into the essence of Al attacks and the security issues that accompany them [13].

Zhu, Zhang, and Chen (2023) provide Al-Guardian, a novel approach to defeating adversarial attacks that employs
purposefully placed backdoors to crash the adversarial disturbance while maintaining the functionality of the initial primary
job. They evaluate Al-Guardian severely using five popular adversarial example generation techniques, and the experiment's
outcomes demonstrate how well it withstands adversarial attacks. Specifically, compared to the state-of-the-art works, the
attack's success rate drops by 30.9% rather than 97.3%, but only the correctness of clean data drops by 0.9%. Moreover, Al-
Guardian adds minimum overhead to the model prediction time; it is 0.36% of the model prediction time, which is nearly
insignificant in the majority of instances [14].

Anastasiou et al. (2022) provide a novel Al architecture that will enhance Al security and dependability by integrating
defense algorithms and adversarial cases. Enhancing deep neural network (DNN) classifiers—primarily convolutional neural
networks (CNNs)—under challenging manufacturing settings that include noise, vibrations, and data transfer mistakes is its
focus. The architecture promotes the dynamic process between the attacker and the defender by training adversarial,
evaluating defense algorithms, and a multiclass discriminator to distinguish between the attacked and the non-attacked data.
As shown in the experimental findings, the defense algorithms and multiclass discriminator work well together to rejuvenate
the weakened models and to build a stronger DNN classifier [15].

Lin (2022) explores ways of making Al models more resilient to data poisoning by focusing on threat taxonomies like
clean-label poisoning, backdoor insertion, and gradient-based adversarial contamination. The paper has assessed defensive
practices in three phases: data sanitization and anomaly detection in the pre-training phase, robust optimization in the model
development phase, and runtime monitoring in the post-training phase. It proposes hybrid solutions as a combination of
effective statistical learning with uncertainty estimation and federated data verification to remove points of failure. Also, it
highlights the value of explainability, accountability, and constant validation to promote trust in settings prone to poisoned
data. It concludes that a multi-layered approach of interventions in all stages is imperative to reduce risks [16].

Table I describes the comparison between existing studies on adversarial attacks in Al systems, based on approaches,
findings, advantages, limitations, and future work.

TABLE I. COMPARATIVE SUMMARY OF EXISTING ADVERSARIAL ATTACK AND DEFENSE RESEARCH

References Approach Key Findings Advantages Limitations Future Work
Sanapala, A proposed ML-Filter | Achieved 99.63% | High  detection | Limited Extend ML-Filter
Lavanya for detecting gradient- | detection for known | accuracy; scalability to real-time
(2024) based data poisoning | and 98% | generalized across large, | adaptive

in industrial ML | generalized detection real-time  data | detection
systems using | detection for | capability; streams; frameworks and
DBSCAN, a detection | unknown  attacks; | statistically performance explore
algorithm, and a | effectiveness grounded method. | under dynamic | integration with
statistical depends on attack scenarios | federated
perturbation bounds | perturbation  size untested. learning security.
identification rather than dataset
algorithm. or ML model.
Villegas-Ch | Evaluated FGSM, | Observed 25-35% | Demonstrated Defenses are not | Develop adaptive
et al., (2024) | PGD, and Carlini & | accuracy drops | comparative model-agnostic; | multimodal
Wagner attacks on | under attacks; | robustness of | limited to the | defense
image classification | image manipulation | image image domain; | techniques
models (VGG16) and | defenses  partially | manipulation performance applicable across
tested image | recovered accuracy. | techniques; trade-off image, text, and
manipulation practical between defense | signal domains.
defenses (noise evaluation across | strength and
reduction, common  attack | accuracy.
compression, methods.
blurring).
Wibawa Simulated adversarial | Found a  66% | Demonstrated Focused on | Design
(2023) attacks using the | accuracy drop under | effectiveness of | basic  attacks; | automated
CleverHans library | attack, emphasizing | simple  attacks; | lacked defense
with FGSM (g = 0.1) | neural network | emphasized comprehensive | frameworks
to assess Al model | vulnerability to | awareness of Al | defense integrated  into
vulnerability. small perturbations. | security threats. evaluation and | model training
quantitative pipelines to
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mitigation mitigate gradient-
strategies. based attacks.
Zhu, Zhang | Introduced Al- | Reduced attack | High defense | Potential ethical | Investigate
& Chen | Guardian, embedding | success rate from | efficacy with | and security | secure backdoor
(2023) intentional backdoors | 97.3% to 3.2% with | minimal risks with | embedding
to neutralize | a negligible 0.9% | computational embedded protocols,
adversarial accuracy loss on | overhead; novel | backdoors; ensuring
perturbations ~ while | clean data. use of intentional | evaluation transparency and
preserving main task backdoors. limited to | preventing
performance. specific  attack | misuse.
models.
Anastasiou To make | Hybrid defense and | Practical Limited Extend  hybrid
etal. (2022) | convolutional neural | multiclass validation in real | generalization defense
networks (CNNs) | discriminator manufacturing beyond mechanisms  to
more resilient in noisy | improved model | data; dual | industrial cross-domain
industrial ~ settings, | robustness and | attacker—defender | settings; applications and
they built an Al | accuracy under | simulation. computationally | improve
architecture using | adversarial intensive; computational
adversarial examples | conditions. requires efficiency.
and defense domain-specific
mechanisms. tuning.
Lin (2022) Comprehensive Layered  defense | Provides a holistic | Lacks empirical | Develop
review of  data | strategies resilience implementation; | empirically
poisoning and | combining robust | framework primarily validated hybrid
adversarial resilience | learning, combining conceptual; frameworks
across pre-, in-, and | uncertainty technical and | limited integrating
post-processing estimation, and | governance quantitative governance,
stages; focused on | federated validation | measures. validation. explainability,
hybrid defense | effectively reduce and  real-world
integration. risks. testing.

III. METHODOLOGY
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Fig. 1. Methodological Process for the Proposed Framework with Integrated Adversarial Defense Mechanisms

The methodology describes a systematic approach that aims to improve the machine learning model's robustness to
adversarial attacks with secure pre-processing, adversarial training, and strict evaluation. The suggested framework starts
with the MNIST dataset that is subjected to systematic data pre-processing in order to enhance the quality of inputs and
resilience. Pre-processing involves data normalization, image reshaping and formatting, and focused data augmentation to
improve generalization. The dataset is then split into training and testing portions after it is prepared so that performance
may be evaluated fairly and reliably. The main architecture to be used in image classification is the Convolutional Neural
Network (CNN) model. In order to make the models robust, they use iterative adversarial training, whereby adversarial
examples are created and added to the training loop. This procedure subjects the model to malicious Peruke, which allows
the model to be trained to learn more robust decision boundaries. The structure also calculates important performance
measures like accuracy, robustness scores, and stability when subjected to adversarial influence to determine the reliability
of the model. The findings eventually show that the suggested secure learning pipeline is effective in creating attack-resistant
and trustworthy Al systems—Fig. 1 Proposed Framework of Integrated Adversarial Defense Mechanisms.
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A. Data Collection

The MNIST dataset! consists of a total of 70,000 grayscale images of handwritten digits (between 0 and 9), each image
is 28x28 pixels in size. Each image is classifiable into one of ten different numeric classes, with the value of each pixel
intensity falling between 0 and 255, which are different degrees of gray. The dataset is balanced with almost an equal
representation of samples in each digit category, so there was an equal distribution of samples per category. All the images
have been scaled to be of equal size and positioned in the middle to ensure uniformity. Fig. 2 displays the Data samples:

Orig: 5 Orig: 5 Orig: 3

Orig: 2 Orig: 6 Orig: 4

The pre-processing step aims at cleaning the raw data, enhancing its clarity, consistency, and formatting to make sure
that the model receives cleaner data that is more reliable, and it brings about better training and higher robustness.

Fig. 2. Data Samples

B. Data Preprocessing

C. Normalization

The min-max normalization technique begins with data normalization. The smallest value for each characteristic or pixel
is converted to 0, the greatest value to 1 [17], and all other values are converted to a decimal between 0 and 1. Equation (1)
is used to implement the min—max normalization procedure:

X—Xpmi
Xnorm = e (1 )
Xmax~Xmin

D. Image Reshaping and Formatting

The purpose of this step is to alter the form of the input data to suit the form needed by the neural network. The images
of MNIST are originally in a 28x28 pixel format, which is converted to a channel format to give the height of the image
28x28x1. This is to give the grayscale channel a precise definition so that it can be used with convolutional layers. Also, the
digit labels are transformed to one-hot coded vectors so that the model can easily do multi-class classification among the ten
digit categories.

E. Data Augmentation

In machine learning, data augmentation is a significant approach to artificially increasing the size and variety of a dataset
and does not require the collection of new data. It entails the use of different transformations on an existing data sample to
generate a new, slightly different sample, but without changing its original label or meaning [18]. This can assist in
generalization of the model, decrease overfitting as well, and lead to improved performance on unseen data. Geometric
transformations (like rotation, flipping, scaling, and cropping), color space manipulation, and noise-based manipulation are
some of the common techniques of data augmentation [19]. A commonly used method of noise is Gaussian Noise
Augmentation, in which the input data is corrupted with random noise that has a Gaussian (normal) distribution. This can be
mathematically written as shown in Equation (2)

x'=x+N(0,0%) )

In this case, x is a given pixel value, and N (0, 52)As a Gaussian noise whose mean is 0 and the variance is s 2. And
after the data samples have some noise, which is presented in Fig. 3:
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Fig. 3. Data Samples After Augmentation

F. Data Splitting

The dataset is separated into subsets for testing and training, with 20% set aside for performance and generalization
accuracy evaluation, and 80% of the data used for model training.

G. Proposed Framework Architecture

Convolutional Neural Network (CNN) with the ability to generate meaningful spatial features of the data. It is
characterized by the two convolutional layers, which have 32 and 64 filters (3x3), along with the ReL U activation and max-
pooling layer (2x2) to minimize the spatial dimension and calculations. The dropout (0.25) is added in a way to avoid
overfitting, and a 1024 neuron fully connected layer with ReL U activation is used to learn the features [20] further. The
output layer has 11 neurons (10 digit classes and 1 adversarial class), which use the softmax activation to produce class
probabilities. To minimize the categorical cross-entropy loss function, the network parameters are optimized, which is
represented by Equation (3)

J(©) = =+ 21 N6 Yielog (i) (3)

v;.Is the actual label, 7;.He forecasted probability, and C is the overall count of classes [21]. Softmax activation used in
the output layer transforms the logits into normalized probabilities. Its mathematical form is given by Equation (4)

eZic

Yie = 5o 4

Assuming that z;.Is the result of the final fully connected neuron on class ¢. The design guarantees its effectiveness in
extracting features, classification, and adversarial retraining.

H. Model Training

The training stage is aimed at optimization of constructed CNN with clean and noisy samples, together with adversarial
samples, to increase the accuracy and resilience of the classification. The model is assembled using the Adam optimizer and
trained in mini-batches comprising an equal representation of all data types. One-hot labels are also applied, but with soft
labels that allow uncertainty and minimize overfitting. New adversarial samples are generated with FGSM, PGD, BIM, and
C&W attacks with every training iteration and concatenated with the training set to undergo iterative adversarial retraining.
The goal function reduces the weighted average of clean and adversarial losses, which enables the model to increase its
resistance to perturbations automatically. The training process will continue until the robustness threshold (p > 0.1) or the
upper iteration limit (kmax = 3000) is met, such that the final model can be highly accurate and have strong resistance to
attack-related conditions.

1. Evaluation Metrics

The proposed model is evaluated in terms of standard classification and adversarial robustness. The percentage of
accurately classified cases, both (benign) and (adversarial), with respect to all instances, as shown in Equation (5):

Accuracy = TPV 100 %)
TP+TN+FP+FN

The values TP, TN, FP, and FN stand for the following: true positives, true negatives, false positives [22], and false
negatives, respectively. The measure of robustness in the presence of adversarial perturbation is the robustness metric (1),
which calculates the difference between model accuracy (pre-adversarial retraining) and that under adversarial retraining.
The mathematical form represented by Equation (6).

p = Accuracy,frer — ACCUTACYpefore 6)

The larger the pvalues, the more resistance to adversarial attacks there is. There are also two evaluation scenarios defined,
including White-Box Attacks, where the attacker is fully aware of the parameters and gradients of the model[23], as well as
Gray-Box Attacks, where the attacker only knows partial information about the model. These types of attacks assist in testing
the model concerning its strength against various levels of threats.
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IV. RESULT AND DISCUSSION

The proposed CNN-based adversarial robust framework was evaluated on the MNIST dataset through experimental
evaluation. The system was trained and tested on a GPU-enabled platform through repeated adversarial retraining on FGSM,

PGD, BIM, and C&W attacks. The findings indicate that adversarial retraining significantly increases the accuracy and the
robustness of the classification.

TABLE II. CLASSIFICATION ACCURACY UNDER WHITE-BOX ATTACKS

Attack Before Retraining | After Retraining
Type (%) (%)
FGSM 28.7 98.6
PGD 324 98.1
BIM 26.5 98.3
C&W 7.0 96.9

Comparison of Accuracy under White-Box Attacks

120 T

80

40

20

0
BIM C&W

FGSM PGD
Attack Type

Fig. 4 and Table II show that the proposed iterative adversarial retraining framework has contributed to a major
improvement in model robustness. The chart presents the accuracy of the model in percentage across four types of white-
box adversarial attack(where the attacker is fully aware of the model): FGSM, PGD, BIM, and C&W. The model is highly
vulnerable. The accuracy of the model before retraining (light orange bars) is much lower, i.e., around 7% (C&W) and 33%
(PGD). Nonetheless, the accuracy of the model increases significantly to almost 100% against all four attacks by
implementing the suggested retraining method (dark blue bars), which proves the usefulness of the framework in ensuring
Al systems are resistant to adversarial attacks and construct sound machine learning models.

Accuracy %
(=)
=}

Fig. 4. Classification Accuracy under White-Box Attacks

TABLE I1I. CLASSIFICATION ACCURACY UNDER GRAY-BOX ATTACKS

Attack Before After
Type Retraining Retraining
(%) (%)
FGSM 11.2 97.9
PGD 9.3 97.9
BIM 4.5 98.5
C&W 8.8 97.0

Comparison of Accuracy under Gray-Box Attacks

PGD BIM C&W

FGSM

120

-
=3
=)

o
=

Accuracy %
- (=)
=] =}

[5°3
I

Attack Type

Fig. 5. Classification Accuracy under Gray-Box Attacks

Fig. 5 and Table III successfully illustrate the enhanced resiliency of the suggested CNN-based iterative adversarial
retraining system to gray-box attacks, whereby the attacker partially knows about the model. The accuracy percentage of the

71
Vol: 2024 | Iss: 05| 2024



Computer Fraud and Security
ISSN (online): 1873-7056

model is demonstrated on four attacks, namely FGSM, PGD, BIM, and C&W. The model, when retrained (light orange
bars), has a very low accuracy, approximately 5% to 10% in all types of attacks, meaning that there is a high vulnerability
to it. After the application of the proposed retraining method (dark blue bars), the accuracy of the model becomes almost
100% in all four gray-box attacks. This demonstration shows that the framework is quite efficient in protecting Al systems,
as well as establishing strong and reliable machine learning models, even in the case when the adversary partially knows the
system.

TABLE IV. PERFORMANCE EVALUATION OF THE PROPOSED FRAMEWORK

Metric Value
Clean Accuracy 99.1
Average Accuracy (White- 97.98
Box)
Average Accuracy (Gray- 97.83
Box)
Robustness (p) 0.12

Table IV is a summary of the proposed defense framework in various evaluation environments. It claims a high clean
accuracy of 99.1, and high resilience of both white and gray box attack situations. The score of robustness (0.12) also
demonstrates how the model is robust to adversarial perturbations. The accuracy and loss curve depicted by Fig. 6:

Training and Validation Accuracy Training and Validation Loss
100.0

—&— Training Loss
051 \\ ~#- Validation Loss

975
95.0
9.5

0.0

Accuracy (%)

87.5

850

82.5{ =#= Training Accuracy
8~ Validation Accuracy

80.0

25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Epochs Epochs

Fig. 6. Training and Validation Accuracy and Loss of the Proposed Framework

Fig. 6 presents evidence of the efficiency and sustainability of the suggested iterative adversarial retraining framework.
The charts demonstrate the training process of 20 epochs: the Training and validation accuracy graph depicts a steady and
consistent rise in both metrics, to almost 99%, which means that the model is learning without much overfitting. In the same
vein, the Training and Validation Loss graph has a converging downward trend of smooth decreasing curves, to a low point.
This great convergence is further substantiated by the quantitative results table, which indicates a high Clean Accuracy of
99.1%. Most importantly, the model operates at a high level even in adversarial environments with an average accuracy of
97.98% in White-Box and 97.83% in Gray-Box attacks. The low Robustness (0.12) value upholds the fact that the model is
not sensitive to the adversarial perturbations, which leads to its high robustness and reliability to wide adversarial attacks.

A. Comparative Analysis and Discussion

The comparative analysis indicates that the suggested framework of Iterative Adversarial Retraining is valuable in
increasing model robustness to adversarial threats. As demonstrated in Table V, the proposed method had the best
classification accuracy of 99.1%, which was higher than Adversarial Training Technique (98.5%) and AEDPL-DL (98.62%).
This gain shows the robustness of the iterative retraining approach, in which the model is presented with freshly drawn
adversarial samples until it reaches some specified robustness level. Training loop with clean, noisy, and adversarial data
guarantees high generalization and stability both in a white-box and gray-box attack adversarial regime. The low but steady
improvement in performance over current defense mechanisms validates that retraining can not only counter gradient-based
attacks but also increase robustness to data poisoning and data evasion attacks, which makes retraining a more reliable and
resilient Al model to apply Al in secure deep learning usages.

TABLE V. COMPARATIVE PERFORMANCE OF DIFFERENT ADVERSARIAL DEFENSE TECHNIQUES

Techniques Accuracy
Iterative adversarial Retraining 99.1
Adversarial Training 98.5
Technique[24]
AEDPL-DL[25] 98.62

The findings clearly show that the iterative adversarial retraining model is very strong in improving model
trustworthiness during both white- and grey-box assaults. The radical change of accuracy, reducing below 30% to over 97%,
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demonstrates that multiple exposures to changing adversarial samples help the model to internalize more fixed decision
boundaries. In contrast to single-pass adversarial training, the iterative strategy is updated to a new perturbation in each cycle
and improves its robustness and clean data performance. The results of the comparison with existing defenses prove that the
suggested approach is more efficient and requires less time to be deployed to solve the problem of creating secure and
credible Al systems.

V. CONCLUSION AND FUTURE STUDY

Enhancing machine learning systems towards adversarial resistance is crucial to the reliability and trust of Al-driven
systems. The suggested framework shows that secure preprocessing, CNN-based classification, and iterative retraining of
adversaries can contribute to a great level of resilience to various attacks. The experimental findings affirm gains of high
strength, with model accuracy increasing to more than 97% with FGSM, PGD, BIM, and C&W attacks. An accuracy of
99.1%, clean, and much better performance than the current methods of defense are indicative of the results of continuously
adding adversarial samples to the training cycle. The flexibility of retraining makes the model set reliable decision limits and
maintain high accuracy despite extremely severe perturbations, confirming the potential of the framework to promote
trustworthy Al It is possible to consider future work extending this framework to more complex and high-dimensional data
sets in order to test all domains, including healthcare, autonomous systems, defence, and finance. This might be incorporating
explainable Al methods that would aid in the understanding of adversarial behaviors and enhance transparency. The
distributed and federated learning scenarios can provide an extra level of protection due to the decentralization of the attack
surfaces. Other studies can also focus on lightweight architectures and adaptive adversarial generators to be deployed in real-
time. The further development of these directions will help to establish more robust and secure Al systems of the next
generation.
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