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Abstract—Harnessing AI systems with adversarial attacks has turned out to be an issue of urgent concern 

as machine learning models continue to work in high-stakes settings. This research suggests an alternative 

and all-in-one adversarial defense, which incorporates safe data preprocessing, CNN-based feature 

extraction, and iterative adversarial retraining to improve the robustness and reliability of the model. The 

framework is tested on the MNIST data set and also includes adversarial samples created by using FGSM, 

PGD, BIM, and C&W. The retraining cycle allows the network to acquire more stable decision boundaries 

by repeatedly exposing the model to changing perturbations and helping to counter weaknesses both on white 

and gray-box threat conditions. Experimental findings indicate a great increment of robustness, accuracy 

upgrades between 7% and over 97% following retraining across all types of attack. The model is clean with 

an accuracy of 99.1 %, and it performs better than the current methods, including conventional adversarial 

training and AEDPL-DL. Comparative evaluation proves the fact that iterative retraining of adversarial 

models is more resilient to data poisoning, evasion, and gradient-based attacks. The suggested solution 

represents a promising avenue for creating secure, attack-deterrent, and trustworthy machine learning 

systems that are applicable in the real world. 

Keywords—Adversarial Attacks, Machine Learning, Convolutional Neural Networks (CNNs), 

Adversarial Defense, Data Poisoning, White-Box Attacks, Grey-Box Attacks, Model Robustness. 

I. INTRODUCTION 

AI and ML have been integrated into the new digital ecosystem in the form of the backbone of the contemporary 
healthcare diagnostics application, financial analytics, cybersecurity monitoring, autonomous transportation, and massive 
enterprise-level systems [1]. Their ability to handle complex information, identify latent trends, and provide quick and 
automatic determination of information has made them valuable assets in a high-stakes operational setting. The stable and 
reliable operation of models as an organization leans more on AI-driven systems to guarantee accuracy, efficiency, and 
reliability, which has become a pressing need to ensure safety, economic stability, and continuity of services [2]. 

Although effective when the conditions are standard, ML models are extremely vulnerable to adversarial interference. 
Tiny, well-designed perturbations, which may be completely invisible to human perceptions, can cause large 
misclassification of otherwise correct models [3], [4]. The Fast Gradient Sign Method (FGSM), Projected Gradient Descent 
(PGD), Basic Iterative Method (BIM), and Carlini and Wagner (C&W) attack are examples of well-known adversarial attack 
strategies that exploit gradient-sensitive design flaws to achieve significant failures [5]. Medical imaging classifiers can be 
misled, or fraud detectors bypassed, or autonomous vehicles may be affected by these attacks to alter perceptions of traffic 
signs [6], [7]. These vulnerabilities are potentially very dangerous, showing that even state-of-the-art classifiers can be 
compromised in adversarial conditions. 

The standard training processes have not been trained to be resistant to these targeted disorders [8]. There is a 
considerable difference in robustness of security-sensitive models when adversarial manipulated inputs are presented to 
models trained on a clean distribution only, showing a major gap in generalization [9]. Current methods offer partial defines 
but are often limited in scale, attack-modes, and attack modes, and more holistic and versatile defensive methods are required. 

To solve this issue, the current article proposes a framework of adversarial defines that combines secure pre-processing, 
a CNN-based classification model, and adversarial retraining. The framework would reinforce decision boundaries through 
the creation of controlled adversarial samples and embed the samples into several training cycles, which makes it resilient 
to both white-box and Gray-box attacks [10]. It is expected to establish a defines mechanism that maintains high clean 
accuracy but with substantially greater resistance to a variety of adversarial perturbations, and so enables the use of AI 
systems in mission-critical settings with greater reliability and security.  
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A. Motivation and Contribution of the Paper 

With AI-powered systems fully integrating into the stakes of various areas like healthcare diagnostics, financial safety, 
biometrics, and automated navigation, the issue of reliability in adverse settings has been a major concern. Even the slightest, 
indistinguishable changes can cause machine learning models to misclassify their inputs, undermine safety measures, and 
be maliciously exploited. Traditional defensive mechanisms tend to be reactive and insufficient to scale to new attack vectors, 
and leave the state-of-the-art ML pipeline vulnerable to advanced adversarial manipulation. This increasing weakness 
encourages the necessity of smart, adaptive, and strong defense systems that can withstand various threat conditions. To 
sustain the trust, guarantee the operational stability, and maintenance of safe deployment of AI systems in the environment 
where accuracy and security should be provided simultaneously, it would be vital to improve adversarial resilience. The 
major contributions of the paper are as follows: 

• Use of a well-curated and structured dataset to simulate clean inputs and generate adversarial samples systematically 
by having a controlled assessment of vulnerabilities to the model in a variety of threat cases. 

• Creating an end-to-end data processing pipeline with functionalities such as normalization, sensitive pre-processing, 
and generation of adversarial perturbations to prepare the data to be used to train a robust model. 

• Combining a CNN-based classification model as the main learner and making it more resilient by retraining it via the 
adversarial method iteratively. 

• Adopting an adaptive adversarial retraining mechanism, which involves the use of adversarial samples across several 
training steps, can achieve learning stability on decision boundaries and enhance resilience. 

• Assessing model resilience to both simple and highly advanced perturbations by observing model performance on 
various adversarial attacks, including FGSM, PGD, BIM, and CW. 

• Comparison of the suggested method to the existing techniques and proving better clean accuracy and much higher 
adversarial robustness. 

B. Justification and Novelty of the Paper 

The article is supported by the fact that quick, reliable AI systems that resist advanced, adaptive, adversarial threats are 
urgently needed. This study presents a dynamic iterative retraining process as opposed to the traditional training processes, 
which depend on fixed adversarial samples, and as such, new adversarial samples emerge and are included throughout, 
preserving robustness in a continuously evolving fashion. The novelty lies in the fact that clean, noisy, and multi-attack 
samples are combined into one training loop that has a robustness threshold, which results in a stable performance regardless 
of the type of attack. This multi-layered upgrading of the existing defense strategies offers greater generalization and 
enhanced resilience. 

C. Structure of the Paper 

The paper will be organized in the following way: Section II will provide a review of the current studies. Section III 
describes the suggested methodology, which consists of the dataset preparation, secure preprocessing, and architecture 
design. Section IV includes the experimental configuration, assessments, and comparison outcomes in several scenarios of 
adversarial attacks. The final section of Section V finishes with an overview of the main findings and future research 
prospects. 

II. LITERATURE REVIEW 

Adversarial attacks threaten the AI system's reliability. Recent research examines various defense mechanisms, 
exploiting machine learning methods to identify, reduce, and respond to cyber threats to prove dependable and reliable smart 
systems. 

Sanapala, Lavanya (2024) introduces the ML Filter, which is a new method that incorporates the aspects of security in 
machine learning so as to detect and eliminate the known and unknown threats efficiently. The Statistical Perturbation 
Bounds Identification Algorithm and the ML-Filter Detection Algorithm are used to assess if a dataset is contaminated.  The 
data is divided using DBSCAN so that an algorithm can analyze it. The research considers its performance through the True 
Positive Rate, significance test accuracy, which the performance of detection depends on the perturbation size and not on 
the dataset or the ML models used. ML Filter is also able to detect known attacks with a rate of 99.63% and a generalized 
rate of 98%, which shows that there is a lot of progress in machine learning and deep learning algorithms [11]. 

Villegas-Ch et al. (2024) evaluated the VGG16 image classification model's resistance and adverse example creation.  
To assess the impact on the classification accuracy, they employed techniques to attack the original images, such as the 
Carlini and Wagner attack, the Projected Gradient Descent method, and the Fast Gradient Sign method.  Because the average 
accuracy decreased by 25% when attacked by the Fast Gradient Sign and Projected Gradient Descent assaults and by 35% 
when attacked using the Carlini and Wagner approach, the study found that the VGG16 model was vulnerable to adversarial 
cases.  As potential defences against these hostile threats, picture manipulation techniques like noise reduction, image 
compression, and Gaussian blurring were also investigated [12]. 

Wibawa (2023) examines the security concerns and attacks on AI systems as adversarial threats. The study is based on 
AI models simulating and testing their robustness using Python programming and libraries like Clever Hans, which is suited 
to evaluate AI security. The authors point out that any little tampering in the input data can have severe impacts on AI 
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predictions, as the FGSM model shows such a sharp decline in accuracy of approximately 66% at epsilon of 0.1 when 
attacked. These vulnerabilities are important to understand in order to protect the progress of AI technology. Through a 
thorough insight into the essence of AI attacks and the security issues that accompany them [13]. 

Zhu, Zhang, and Chen (2023) provide AI-Guardian, a novel approach to defeating adversarial attacks that employs 
purposefully placed backdoors to crash the adversarial disturbance while maintaining the functionality of the initial primary 
job. They evaluate AI-Guardian severely using five popular adversarial example generation techniques, and the experiment's 
outcomes demonstrate how well it withstands adversarial attacks. Specifically, compared to the state-of-the-art works, the 
attack's success rate drops by 30.9% rather than 97.3%, but only the correctness of clean data drops by 0.9%. Moreover, AI-
Guardian adds minimum overhead to the model prediction time; it is 0.36% of the model prediction time, which is nearly 
insignificant in the majority of instances [14]. 

Anastasiou et al. (2022) provide a novel AI architecture that will enhance AI security and dependability by integrating 
defense algorithms and adversarial cases. Enhancing deep neural network (DNN) classifiers—primarily convolutional neural 
networks (CNNs)—under challenging manufacturing settings that include noise, vibrations, and data transfer mistakes is its 
focus. The architecture promotes the dynamic process between the attacker and the defender by training adversarial, 
evaluating defense algorithms, and a multiclass discriminator to distinguish between the attacked and the non-attacked data. 
As shown in the experimental findings, the defense algorithms and multiclass discriminator work well together to rejuvenate 
the weakened models and to build a stronger DNN classifier [15]. 

Lin (2022) explores ways of making AI models more resilient to data poisoning by focusing on threat taxonomies like 
clean-label poisoning, backdoor insertion, and gradient-based adversarial contamination. The paper has assessed defensive 
practices in three phases: data sanitization and anomaly detection in the pre-training phase, robust optimization in the model 
development phase, and runtime monitoring in the post-training phase. It proposes hybrid solutions as a combination of 
effective statistical learning with uncertainty estimation and federated data verification to remove points of failure. Also, it 
highlights the value of explainability, accountability, and constant validation to promote trust in settings prone to poisoned 
data. It concludes that a multi-layered approach of interventions in all stages is imperative to reduce risks [16]. 

Table I describes the comparison between existing studies on adversarial attacks in AI systems, based on approaches, 
findings, advantages, limitations, and future work. 

TABLE I.  COMPARATIVE SUMMARY OF EXISTING ADVERSARIAL ATTACK AND DEFENSE RESEARCH 

References Approach Key Findings Advantages Limitations Future Work 

Sanapala, 

Lavanya 

(2024) 

A proposed ML-Filter 

for detecting gradient-

based data poisoning 

in industrial ML 

systems using 

DBSCAN, a detection 

algorithm, and a 

statistical 

perturbation bounds 

identification 

algorithm. 

Achieved 99.63% 

detection for known 

and 98% 

generalized 

detection for 

unknown attacks; 

effectiveness 

depends on 

perturbation size 

rather than dataset 

or ML model. 

High detection 

accuracy; 

generalized 

detection 

capability; 

statistically 

grounded method. 

Limited 

scalability 

across large, 

real-time data 

streams; 

performance 

under dynamic 

attack scenarios 

untested. 

Extend ML-Filter 

to real-time 

adaptive 

detection 

frameworks and 

explore 

integration with 

federated 

learning security. 

Villegas-Ch 

et al., (2024) 

Evaluated FGSM, 

PGD, and Carlini & 

Wagner attacks on 

image classification 

models (VGG16) and 

tested image 

manipulation 

defenses (noise 

reduction, 

compression, 

blurring). 

Observed 25–35% 

accuracy drops 

under attacks; 

image manipulation 

defenses partially 

recovered accuracy. 

Demonstrated 

comparative 

robustness of 

image 

manipulation 

techniques; 

practical 

evaluation across 

common attack 

methods. 

Defenses are not 

model-agnostic; 

limited to the 

image domain; 

performance 

trade-off 

between defense 

strength and 

accuracy. 

Develop adaptive 

multimodal 

defense 

techniques 

applicable across 

image, text, and 

signal domains. 

Wibawa 

(2023) 

Simulated adversarial 

attacks using the 

CleverHans library 

with FGSM (ε = 0.1) 

to assess AI model 

vulnerability. 

Found a 66% 

accuracy drop under 

attack, emphasizing 

neural network 

vulnerability to 

small perturbations. 

Demonstrated 

effectiveness of 

simple attacks; 

emphasized 

awareness of AI 

security threats. 

Focused on 

basic attacks; 

lacked 

comprehensive 

defense 

evaluation and 

quantitative 

Design 

automated 

defense 

frameworks 

integrated into 

model training 

pipelines to 
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mitigation 

strategies. 

mitigate gradient-

based attacks. 

Zhu, Zhang 

& Chen 

(2023) 

Introduced AI-

Guardian, embedding 

intentional backdoors 

to neutralize 

adversarial 

perturbations while 

preserving main task 

performance. 

Reduced attack 

success rate from 

97.3% to 3.2% with 

a negligible 0.9% 

accuracy loss on 

clean data. 

High defense 

efficacy with 

minimal 

computational 

overhead; novel 

use of intentional 

backdoors. 

Potential ethical 

and security 

risks with 

embedded 

backdoors; 

evaluation 

limited to 

specific attack 

models. 

Investigate 

secure backdoor 

embedding 

protocols, 

ensuring 

transparency and 

preventing 

misuse. 

Anastasiou 

et al. (2022) 

To make 

convolutional neural 

networks (CNNs) 

more resilient in noisy 

industrial settings, 

they built an AI 

architecture using 

adversarial examples 

and defense 

mechanisms. 

Hybrid defense and 

multiclass 

discriminator 

improved model 

robustness and 

accuracy under 

adversarial 

conditions. 

Practical 

validation in real 

manufacturing 

data; dual 

attacker–defender 

simulation. 

Limited 

generalization 

beyond 

industrial 

settings; 

computationally 

intensive; 

requires 

domain-specific 

tuning. 

Extend hybrid 

defense 

mechanisms to 

cross-domain 

applications and 

improve 

computational 

efficiency. 

Lin (2022) Comprehensive 

review of data 

poisoning and 

adversarial resilience 

across pre-, in-, and 

post-processing 

stages; focused on 

hybrid defense 

integration. 

Layered defense 

strategies 

combining robust 

learning, 

uncertainty 

estimation, and 

federated validation 

effectively reduce 

risks. 

Provides a holistic 

resilience 

framework 

combining 

technical and 

governance 

measures. 

Lacks empirical 

implementation; 

primarily 

conceptual; 

limited 

quantitative 

validation. 

Develop 

empirically 

validated hybrid 

frameworks 

integrating 

governance, 

explainability, 

and real-world 

testing. 

 

III. METHODOLOGY 

 

Fig. 1. Methodological Process for the Proposed Framework with Integrated Adversarial Defense Mechanisms 

The methodology describes a systematic approach that aims to improve the machine learning model's robustness to 
adversarial attacks with secure pre-processing, adversarial training, and strict evaluation. The suggested framework starts 
with the MNIST dataset that is subjected to systematic data pre-processing in order to enhance the quality of inputs and 
resilience. Pre-processing involves data normalization, image reshaping and formatting, and focused data augmentation to 
improve generalization. The dataset is then split into training and testing portions after it is prepared so that performance 
may be evaluated fairly and reliably. The main architecture to be used in image classification is the Convolutional Neural 
Network (CNN) model. In order to make the models robust, they use iterative adversarial training, whereby adversarial 
examples are created and added to the training loop. This procedure subjects the model to malicious Peruke, which allows 
the model to be trained to learn more robust decision boundaries. The structure also calculates important performance 
measures like accuracy, robustness scores, and stability when subjected to adversarial influence to determine the reliability 
of the model. The findings eventually show that the suggested secure learning pipeline is effective in creating attack-resistant 
and trustworthy AI systems—Fig. 1 Proposed Framework of Integrated Adversarial Defense Mechanisms. 
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A. Data Collection 

The MNIST dataset1 consists of a total of 70,000 grayscale images of handwritten digits (between 0 and 9), each image 
is 28x28 pixels in size. Each image is classifiable into one of ten different numeric classes, with the value of each pixel 
intensity falling between 0 and 255, which are different degrees of gray. The dataset is balanced with almost an equal 
representation of samples in each digit category, so there was an equal distribution of samples per category. All the images 
have been scaled to be of equal size and positioned in the middle to ensure uniformity. Fig. 2 displays the Data samples: 

 

Fig. 2. Data Samples 

B. Data Preprocessing 

The pre-processing step aims at cleaning the raw data, enhancing its clarity, consistency, and formatting to make sure 
that the model receives cleaner data that is more reliable, and it brings about better training and higher robustness. 

C. Normalization 

The min-max normalization technique begins with data normalization.  The smallest value for each characteristic or pixel 
is converted to 0, the greatest value to 1 [17], and all other values are converted to a decimal between 0 and 1. Equation (1) 
is used to implement the min–max normalization procedure: 

 𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (1) 

D. Image Reshaping and Formatting 

The purpose of this step is to alter the form of the input data to suit the form needed by the neural network. The images 
of MNIST are originally in a 28x28 pixel format, which is converted to a channel format to give the height of the image 
28x28x1. This is to give the grayscale channel a precise definition so that it can be used with convolutional layers. Also, the 
digit labels are transformed to one-hot coded vectors so that the model can easily do multi-class classification among the ten 
digit categories. 

E. Data Augmentation 

In machine learning, data augmentation is a significant approach to artificially increasing the size and variety of a dataset 
and does not require the collection of new data. It entails the use of different transformations on an existing data sample to 
generate a new, slightly different sample, but without changing its original label or meaning [18]. This can assist in 
generalization of the model, decrease overfitting as well, and lead to improved performance on unseen data. Geometric 
transformations (like rotation, flipping, scaling, and cropping), color space manipulation, and noise-based manipulation are 
some of the common techniques of data augmentation [19]. A commonly used method of noise is Gaussian Noise 
Augmentation, in which the input data is corrupted with random noise that has a Gaussian (normal) distribution. This can be 
mathematically written as shown in Equation (2) 

 𝑥′ = 𝑥 +𝒩(0, 𝜎2) (2) 

In this case, x is a given pixel value, and 𝒩(0, 𝜎2)As a Gaussian noise whose mean is 0 and the variance is s 2. And 
after the data samples have some noise, which is presented in Fig. 3: 

 
 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________________ 
70 

Vol: 2024 | Iss: 05 | 2024 

 

 

Fig. 3. Data Samples After Augmentation 

F. Data Splitting 

The dataset is separated into subsets for testing and training, with 20% set aside for performance and generalization 
accuracy evaluation, and 80% of the data used for model training. 

G. Proposed Framework Architecture 

Convolutional Neural Network (CNN) with the ability to generate meaningful spatial features of the data. It is 
characterized by the two convolutional layers, which have 32 and 64 filters (3x3), along with the ReLU activation and max-
pooling layer (2x2) to minimize the spatial dimension and calculations. The dropout (0.25) is added in a way to avoid 
overfitting, and a 1024 neuron fully connected layer with ReLU activation is used to learn the features [20] further. The 
output layer has 11 neurons (10 digit classes and 1 adversarial class), which use the softmax activation to produce class 
probabilities. To minimize the categorical cross-entropy loss function, the network parameters are optimized, which is 
represented by Equation (3) 

 𝐽(𝜃) = −
1

𝑁
∑ ∑ 𝑦𝑖𝑐log⁡(𝑦̂𝑖𝑐)

𝐶
𝑐=1

𝑁
𝑖=1  (3) 

𝑦𝑖𝑐Is the actual label, 𝑦̂𝑖𝑐He forecasted probability, and C is the overall count of classes [21]. Softmax activation used in 
the output layer transforms the logits into normalized probabilities. Its mathematical form is given by Equation (4) 

 𝑦̂𝑖𝑐 =
𝑒𝑧𝑖𝑐

∑ 𝑒𝑧𝑖𝑘𝐶
𝑘=1

 (4) 

Assuming that 𝑧𝑖𝑐Is the result of the final fully connected neuron on class c. The design guarantees its effectiveness in 
extracting features, classification, and adversarial retraining. 

H. Model Training 

The training stage is aimed at optimization of constructed CNN with clean and noisy samples, together with adversarial 
samples, to increase the accuracy and resilience of the classification. The model is assembled using the Adam optimizer and 
trained in mini-batches comprising an equal representation of all data types. One-hot labels are also applied, but with soft 
labels that allow uncertainty and minimize overfitting. New adversarial samples are generated with FGSM, PGD, BIM, and 
C&W attacks with every training iteration and concatenated with the training set to undergo iterative adversarial retraining. 
The goal function reduces the weighted average of clean and adversarial losses, which enables the model to increase its 
resistance to perturbations automatically. The training process will continue until the robustness threshold (ρ ≥ 0.1) or the 
upper iteration limit (kmax = 3000) is met, such that the final model can be highly accurate and have strong resistance to 
attack-related conditions. 

I. Evaluation Metrics 

The proposed model is evaluated in terms of standard classification and adversarial robustness. The percentage of 
accurately classified cases, both (benign) and (adversarial), with respect to all instances, as shown in Equation (5): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100 (5) 

The values TP, TN, FP, and FN stand for the following: true positives, true negatives, false positives [22], and false 
negatives, respectively. The measure of robustness in the presence of adversarial perturbation is the robustness metric (r), 
which calculates the difference between model accuracy (pre-adversarial retraining) and that under adversarial retraining. 
The mathematical form represented by Equation (6). 

 𝜌 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑎𝑓𝑡𝑒𝑟 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑏𝑒𝑓𝑜𝑟𝑒  (6) 

The larger the 𝜌values, the more resistance to adversarial attacks there is. There are also two evaluation scenarios defined, 
including White-Box Attacks, where the attacker is fully aware of the parameters and gradients of the model[23], as well as 
Gray-Box Attacks, where the attacker only knows partial information about the model. These types of attacks assist in testing 
the model concerning its strength against various levels of threats. 
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IV. RESULT AND DISCUSSION 

The proposed CNN-based adversarial robust framework was evaluated on the MNIST dataset through experimental 
evaluation. The system was trained and tested on a GPU-enabled platform through repeated adversarial retraining on FGSM, 
PGD, BIM, and C&W attacks. The findings indicate that adversarial retraining significantly increases the accuracy and the 
robustness of the classification. 

TABLE II.  CLASSIFICATION ACCURACY UNDER WHITE-BOX ATTACKS 

Attack 

Type 

Before Retraining 

(%) 

After Retraining 

(%) 

FGSM 28.7 98.6 

PGD 32.4 98.1 

BIM 26.5 98.3 

C&W 7.0 96.9 

 

Fig. 4. Classification Accuracy under White-Box Attacks 

Fig. 4 and Table II show that the proposed iterative adversarial retraining framework has contributed to a major 
improvement in model robustness. The chart presents the accuracy of the model in percentage across four types of white-
box adversarial attack(where the attacker is fully aware of the model): FGSM, PGD, BIM, and C&W. The model is highly 
vulnerable. The accuracy of the model before retraining (light orange bars) is much lower, i.e., around 7% (C&W) and 33% 
(PGD). Nonetheless, the accuracy of the model increases significantly to almost 100% against all four attacks by 
implementing the suggested retraining method (dark blue bars), which proves the usefulness of the framework in ensuring 
AI systems are resistant to adversarial attacks and construct sound machine learning models. 

TABLE III.  CLASSIFICATION ACCURACY UNDER GRAY-BOX ATTACKS 

Attack 

Type 

Before 

Retraining 

(%) 

After 

Retraining 

(%) 

FGSM 11.2 97.9 

PGD 9.3 97.9 

BIM 4.5 98.5 

C&W 8.8 97.0 

 

Fig. 5. Classification Accuracy under Gray-Box Attacks 

Fig. 5 and Table III successfully illustrate the enhanced resiliency of the suggested CNN-based iterative adversarial 
retraining system to gray-box attacks, whereby the attacker partially knows about the model. The accuracy percentage of the 
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model is demonstrated on four attacks, namely FGSM, PGD, BIM, and C&W. The model, when retrained (light orange 
bars), has a very low accuracy, approximately 5% to 10% in all types of attacks, meaning that there is a high vulnerability 
to it. After the application of the proposed retraining method (dark blue bars), the accuracy of the model becomes almost 
100% in all four gray-box attacks. This demonstration shows that the framework is quite efficient in protecting AI systems, 
as well as establishing strong and reliable machine learning models, even in the case when the adversary partially knows the 
system. 

TABLE IV.  PERFORMANCE EVALUATION OF THE PROPOSED FRAMEWORK 

Metric Value 

Clean Accuracy 99.1 

Average Accuracy (White-

Box) 

97.98 

Average Accuracy (Gray-

Box) 

97.83 

Robustness (ρ) 0.12 

Table IV is a summary of the proposed defense framework in various evaluation environments. It claims a high clean 
accuracy of 99.1, and high resilience of both white and gray box attack situations. The score of robustness (0.12) also 
demonstrates how the model is robust to adversarial perturbations. The accuracy and loss curve depicted by Fig. 6: 

 

Fig. 6. Training and Validation Accuracy and Loss of the Proposed Framework 

Fig. 6 presents evidence of the efficiency and sustainability of the suggested iterative adversarial retraining framework. 
The charts demonstrate the training process of 20 epochs: the Training and validation accuracy graph depicts a steady and 
consistent rise in both metrics, to almost 99%, which means that the model is learning without much overfitting. In the same 
vein, the Training and Validation Loss graph has a converging downward trend of smooth decreasing curves, to a low point. 
This great convergence is further substantiated by the quantitative results table, which indicates a high Clean Accuracy of 
99.1%. Most importantly, the model operates at a high level even in adversarial environments with an average accuracy of 
97.98% in White-Box and 97.83% in Gray-Box attacks. The low Robustness (0.12) value upholds the fact that the model is 
not sensitive to the adversarial perturbations, which leads to its high robustness and reliability to wide adversarial attacks. 

A. Comparative Analysis and Discussion 

The comparative analysis indicates that the suggested framework of Iterative Adversarial Retraining is valuable in 
increasing model robustness to adversarial threats. As demonstrated in Table V, the proposed method had the best 
classification accuracy of 99.1%, which was higher than Adversarial Training Technique (98.5%) and AEDPL-DL (98.62%). 
This gain shows the robustness of the iterative retraining approach, in which the model is presented with freshly drawn 
adversarial samples until it reaches some specified robustness level. Training loop with clean, noisy, and adversarial data 
guarantees high generalization and stability both in a white-box and gray-box attack adversarial regime. The low but steady 
improvement in performance over current defense mechanisms validates that retraining can not only counter gradient-based 
attacks but also increase robustness to data poisoning and data evasion attacks, which makes retraining a more reliable and 
resilient AI model to apply AI in secure deep learning usages. 

TABLE V.  COMPARATIVE PERFORMANCE OF DIFFERENT ADVERSARIAL DEFENSE TECHNIQUES 

Techniques Accuracy 

Iterative adversarial Retraining 99.1 

Adversarial Training 

Technique[24] 

98.5 

AEDPL-DL[25] 98.62 

The findings clearly show that the iterative adversarial retraining model is very strong in improving model 
trustworthiness during both white- and grey-box assaults. The radical change of accuracy, reducing below 30% to over 97%, 
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demonstrates that multiple exposures to changing adversarial samples help the model to internalize more fixed decision 
boundaries. In contrast to single-pass adversarial training, the iterative strategy is updated to a new perturbation in each cycle 
and improves its robustness and clean data performance. The results of the comparison with existing defenses prove that the 
suggested approach is more efficient and requires less time to be deployed to solve the problem of creating secure and 
credible AI systems. 

V. CONCLUSION AND FUTURE STUDY 

Enhancing machine learning systems towards adversarial resistance is crucial to the reliability and trust of AI-driven 
systems. The suggested framework shows that secure preprocessing, CNN-based classification, and iterative retraining of 
adversaries can contribute to a great level of resilience to various attacks. The experimental findings affirm gains of high 
strength, with model accuracy increasing to more than 97% with FGSM, PGD, BIM, and C&W attacks. An accuracy of 
99.1%, clean, and much better performance than the current methods of defense are indicative of the results of continuously 
adding adversarial samples to the training cycle. The flexibility of retraining makes the model set reliable decision limits and 
maintain high accuracy despite extremely severe perturbations, confirming the potential of the framework to promote 
trustworthy AI. It is possible to consider future work extending this framework to more complex and high-dimensional data 
sets in order to test all domains, including healthcare, autonomous systems, defence, and finance. This might be incorporating 
explainable AI methods that would aid in the understanding of adversarial behaviors and enhance transparency. The 
distributed and federated learning scenarios can provide an extra level of protection due to the decentralization of the attack 
surfaces. Other studies can also focus on lightweight architectures and adaptive adversarial generators to be deployed in real-
time. The further development of these directions will help to establish more robust and secure AI systems of the next 
generation. 
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