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Abstract 

This study presents a comparative evaluation of Amazon Web Services (AWS)-based deployment strategies for a deep 

learning model designed to predict curcumin concentration in turmeric (Curcuma longa) rhizomes using hyperspectral 

imaging (HSI). The proposed hybrid model was trained on features labeled with high-performance liquid chromatography 

(HPLC) and integrated both spectral and spatial feature extraction. Four distinct deployment pipelines were examined: (i) 

Amazon EC2-based manual deployment, (ii) fully managed SageMaker inference endpoints, (iii) AWS Step Functions for 

orchestrated workflows, and (iv) Kubernetes-based deployment via Amazon Elastic Kubernetes Service (EKS). Each 

approach was systematically assessed across dimensions of scalability, cost efficiency, automation, monitoring, and 

operational effort. The comparative analysis reveals that SageMaker offers the most balanced solution, combining ease of 

setup, monitoring, and auto-scaling, while Step Functions excel in modular orchestration. EC2 and EKS provide higher 

control but at the expense of operational overhead. Findings highlight AWS SageMaker as the optimal strategy for research 

transitioning toward production-scale agricultural machine learning applications, particularly for real-time curcumin 

estimation in hyperspectral imaging workflows. 

Introduction 

Turmeric (Curcuma longa L.) is a widely cultivated spice crop with medicinal, nutritional, and economic significance 

across South Asia and beyond. The primary bioactive compound, curcumin, exhibits antioxidant, anti-inflammatory, and 

therapeutic properties (Aggarwal & Sung, 2009; Amalraj et al., 2017). Accurate and rapid estimation of curcumin 

concentration is vital for quality assurance, pharmaceutical applications, and breeding programs (Li et al., 2011; 

Jayaprakasha et al., 2020). Conventional chemical analysis techniques such as high-performance liquid chromatography 

(HPLC) provide precise measurements but are labor-intensive, time-consuming, and unsuitable for large-scale or field-

based screening (Sasikumar, 2005). 

Hyperspectral imaging (HSI) offers a non-destructive and high-throughput alternative for biochemical quantification in 

agricultural produce (Thenkabail et al., 2016). By capturing both spectral and spatial information, HSI enables machine 

learning models to approximate curcumin levels without extensive chemical processing. Recent advances in deep learning, 

particularly spectral–spatial hybrid networks, have demonstrated superior predictive accuracy compared to traditional 

chemometric models (Kumar et al., 2021; Xie et al., 2022). 

Despite advances in modeling, real-time or large-scale deployment of hyperspectral models remains challenging. Cloud 

platforms such as AWS provide scalable infrastructure, but researchers face difficulties in selecting optimal deployment 

strategies tailored to cost, monitoring, latency, and automation requirements (Sriram et al., 2020; Banerjee et al., 2023). 

Comparing deployment pipelines is thus critical for agricultural informatics, where both accuracy and scalability dictate 

adoption. 

This study systematically investigates four AWS deployment strategies—EC2, SageMaker, Step Functions, and EKS—for 

curcumin prediction models built on hyperspectral imaging. The comparative evaluation highlights trade-offs across cost, 

scalability, and operational complexity, offering practical guidance for researchers and enterprises adopting cloud-based 

agricultural machine learning solutions. 

Related Work 

Curcumin Estimation Techniques 

Early studies on curcumin quantification predominantly relied on chromatographic and spectroscopic methods (Li et al., 

2011; Jayaprakasha et al., 2020). While highly accurate, these laboratory-based methods lack scalability in agricultural 

supply chains. Efforts to adopt near-infrared (NIR) and mid-infrared spectroscopy demonstrated moderate success (Sharma 
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et al., 2017), but hyperspectral imaging provided superior predictive resolution by combining both spectral and spatial data 

(Thenkabail et al., 2016). 

Hyperspectral Imaging in Agriculture 

HSI has been widely applied to quality assessment, disease detection, and biochemical quantification in crops such as rice, 

wheat, and maize (Ge et al., 2019; Wu et al., 2021). For turmeric, preliminary applications have shown promise in 

classifying adulteration and estimating curcumin content (Ravindran et al., 2020). Machine learning models, including 

partial least squares regression (PLSR) and convolutional neural networks (CNNs), have been applied for chemical trait 

prediction (Zhang et al., 2022). 

Deep Learning Approaches 

Hybrid deep learning frameworks combining spectral vectors with spatial texture features have recently emerged as state-

of-the-art in hyperspectral regression tasks (Li et al., 2017; Xie et al., 2022). These models capture both pixel-level 

reflectance and neighborhood-based context, enhancing robustness to noise and environmental variation. 

Cloud-Based Deployment of ML Models 

With increasing dataset sizes, model deployment strategies have become critical. AWS services are widely adopted for 

scalable ML deployment, offering solutions ranging from customizable EC2 instances to fully managed SageMaker 

endpoints (Bauer et al., 2021). Comparative studies in healthcare and remote sensing highlight the benefits of managed 

services for reducing operational complexity (Sriram et al., 2020; Guo et al., 2022). Kubernetes-based solutions provide 

flexibility for enterprises with DevOps expertise (Chen et al., 2019), while Step Functions enable modular workflows with 

automated retraining cycles (Banerjee et al., 2023). 

Research Gap 

Although hyperspectral imaging and deep learning have advanced significantly, limited studies address the deployment 

dimension, particularly in agricultural biochemistry prediction tasks. Existing works primarily emphasize model accuracy, 

overlooking infrastructure considerations essential for scaling research to production. This study bridges that gap by 

conducting a systematic comparison of four AWS pipelines specifically for curcumin concentration prediction using 

hyperspectral imaging. 

Methodology 

Model Development 

The curcumin prediction model was designed as a hybrid deep learning framework integrating spectral and spatial 

information. Spectral vectors extracted from each pixel were processed using dense neural layers, while texture features 

derived from the gray-level co-occurrence matrix (GLCM) captured spatial context (Haralick et al., 1973). The regression 

output was optimized against HPLC-labeled concentrations using a mean squared error (MSE) loss function.Each 

hyperspectral pixel is represented as a vector: 

𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛]
⊤ ∈ ℝ𝑛 

 

where 𝑥𝑖 represents the reflectance at the 𝑖 th spectral band. 

The regression model approximates curcumin concentration as: 

𝑦̂ = 𝑓(𝐱; 𝜃) 

where 𝜃 denotes the model parameters and 𝑦̂ is the predicted concentration. 

The training objective minimizes the mean squared error (MSE): 

 

ℒMSE =
1

𝑁
∑(𝑓(𝐱𝑖; 𝜃) − 𝑦𝑖)

2

𝑁

𝑖=1
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Preprocessing 

Data preprocessing involved z-score normalization of reflectance bands and entropy-based GLCM feature extraction to 

enhance spatial-spectral correlation. Features were consolidated into tensors representing regions of interest (ROI) in 

turmeric rhizomes. 

Spectral Normalization 

Each band was normalized using z-score: 

𝑥′ =
𝑥 − 𝜇

𝜎
 

Texture Feature Extraction 

For spatial context, Gray-Level Co-occurrence Matrix (GLCM) features such as entropy were extracted: 

Entropy = −∑∑𝑃

𝐺

𝑗=1

𝐺

𝑖=1

(𝑖, 𝑗)log𝑃(𝑖, 𝑗) 

where 𝑃(𝑖, 𝑗) is the co-occurrence probability matrix and 𝐺 is the gray level. 

 

AWS Deployment Pipelines 

Four AWS-based deployment strategies were implemented: 

1. EC2 Pipeline: Full control over training, inference, and RESTful API hosting using Flask/FastAPI.The EC2-

based pipeline provides the highest level of control over the machine learning deployment process. In this 

approach, the user is responsible for provisioning, configuring, deploying, and managing the entire lifecycle of 

the deep learning model on Amazon EC2 (Elastic Compute Cloud) instances. This method is best suited for 

researchers or developers who require custom environments or need to run specialized software not available in 

managed services. 

 

This approach is suitable for academic researchers or data scientists needing fine-   

grained control for experimental models, custom hardware, or software-level 
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 debugging. It is especially useful in early stages of development or when migrating  

legacy ML workflows to the cloud. 

  

2. SageMaker Pipeline: Managed environment with integrated scaling, monitoring, and HTTPS endpoints. 

Amazon SageMaker offers a fully managed environment for developing, training, and deploying machine 

learning models. This pipeline abstracts much of the infrastructure management and provides a seamless end-

to-end workflow from model creation to scalable deployment. 

 

This approach is ideal for production-grade deployments where scalability, security, and maintainability are 

essential. It suits research labs and startups looking to quickly operationalize models without managing 

infrastructure. 

3. Step Functions: Modular orchestration for preprocessing, training, and conditional deployment. AWS Step 

Functions allow orchestration of complex machine learning workflows across multiple AWS services using 

a visual and code-defined state machine. It is useful for creating automated pipelines involving preprocessing, 

training, evaluation, and deployment stages.. 
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Recommended for applications requiring periodic retraining, human-in-the-loop approval, and reproducible 

pipelines, such as agricultural monitoring, pharmaceutical R&D, and IoT-based prediction workflows 

4. EKS Pipeline: Kubernetes-based container orchestration supporting multi-model deployment. Amazon 

Elastic Kubernetes Service (EKS) provides a managed Kubernetes platform for deploying containerized 

machine learning inference services. This approach is suitable for users familiar with container orchestration 

and DevOps practices. 

 

Recommended for enterprises or research groups with mature DevOps pipelines and the need to deploy large-

scale, containerized ML applications alongside microservices. 

Comparative Analysis 

Comparative evaluation considered setup complexity, scalability, monitoring, debugging, cost efficiency, and suitability 

for agricultural ML. 

Results and Comparative Analysis  

Feature EC2-Based SageMaker Step Functions EKS 

Setup Time High Low Medium High 

Cost Efficiency Low Medium High Medium 

Scalability Manual Auto Auto Auto 

Maintenance 

Burden 

High Low Low Medium 

Debuggability Full Moderate Low Full 

Suitability for 

Curcumin 

Medium High High Medium 
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The comparative evaluation demonstrated clear trade-offs among the four approaches: 

• EC2: High flexibility and debuggability, but costly and labor-intensive to maintain. 

• SageMaker: Balanced performance with auto-scaling, integrated monitoring, and moderate cost. 

• Step Functions: Cost-efficient and modular but limited in real-time latency. 

• EKS: Suitable for enterprise-scale workloads with DevOps expertise, though complex to manage. 

 

 

 

A radar-chart analysis indicated SageMaker as the most suitable choice for curcumin prediction given its trade-off balance. 

Step Functions excelled in retraining workflows, while EC2 and EKS catered to niche requirements for customization and 

control. 

Local benchmarking on an Intel i9 workstation with RTX 3060 GPU demonstrated comparable inference speeds to cloud 

deployment on SageMaker’s ml.g4dn.xlarge instance, validating cloud feasibility for scaling. 

Discussion 

The findings highlight that deployment strategies strongly influence the practical adoption of hyperspectral deep learning 

in agriculture. While model accuracy often dominates research focus, infrastructure design determines scalability and cost-

effectiveness. SageMaker emerged as the most pragmatic choice for academic and early industrial adoption due to its low 

maintenance burden and built-in lifecycle management. However, Step Functions offer significant advantages in scenarios 

requiring automated retraining with human-in-the-loop governance, which is critical for regulated environments such as 

pharmaceuticals. 

EKS and EC2 remain valuable in contexts requiring full customization, yet the operational overhead renders them less 

suitable for small research teams. The comparative framework developed here is extensible to other agricultural machine 

learning applications, including nutrient estimation, disease detection, and yield prediction. 

Conclusion 

This study concludes that AWS SageMaker offers the most balanced deployment pathway for curcumin concentration 

prediction using hyperspectral imaging. Its combination of ease of use, auto-scaling, monitoring, and cost efficiency 

positions it as the leading platform for both academic research and applied agricultural biotechnology. Step Functions 

complement this by enabling automated, modular retraining pipelines. EC2 and EKS remain niche options, appropriate for 

legacy systems or enterprise-scale customization. 

By systematically comparing these strategies, this work provides actionable insights for researchers and developers seeking 

to operationalize hyperspectral imaging-based biochemical prediction in agriculture. Future research should integrate 

federated learning and edge-cloud hybrid systems to further optimize cost and latency in resource-constrained 

environments. 
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