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Abstract:  

The rapid advancement of microservices architecture in software and internet applications has introduced 

significant challenges in managing distributed systems, particularly in maintaining operational efficiency and 

real-time responsiveness. This paper presents an innovative automated encapsulation and deployment 

framework tailored to address the frequent updates required by data-driven models in dynamic microservices 

environments. By integrating Docker containerization with Continuous Integration/Continuous Deployment 

(CI/CD) practices, the framework streamlines model management processes, enhancing both adaptability and 

operational efficiency. Leveraging modern tools such as Kubernetes and GitLab, we developed and tested a 

prototype system that facilitates rapid updates and robust management of intelligent models, ensuring their 

responsiveness to evolving data patterns. Empirical evaluations demonstrated substantial reductions in model 

deployment times and improved responsiveness to business requirements, while also identifying critical 

bottlenecks in traditional packaging and deployment methods. Our findings underscore significant 

improvements in operational efficiency and reduced manual intervention for model updates, with further 

optimizations to minimize deployment times and resource consumption. This research contributes a scalable 

and efficient solution for managing the lifecycle of models in microservices environments, addressing key 

challenges such as service granularity, dependency management, and rapid deployment needs, thereby 

enhancing overall system performance and reliability. 
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INTRODUCTION 

With the rapid advancement of software and Internet applications based on microservices architecture, the 

complexity of system management has significantly increased [1,2]. This architecture enhances the granularity and 

dynamism of services, particularly evident in data-driven intelligent model services. In the microservices scenario, 

ensuring the compatibility and performance of services across different environments is crucial to maintain their 

functionality in diverse configurations and infrastructures. Operational management requires continuous 

monitoring of service health and performance metrics, and an ability to promptly respond to potential faults or 

performance degradation [3-5]. These demands necessitate automation and real-time response capabilities to 

minimize manual intervention and enhance system efficiency. 

Furthermore, due to the constant evolution and variation of data, intelligent models need to be updated within 

specific time frames to adapt to the latest data patterns and maintain optimal performance. Existing model 

management methods face numerous challenges in handling frequent service updates and rollbacks, with common 

update mechanisms often too slow to meet the needs for real-time responsiveness [6,7]. 

In microservices systems, the automation of model updates and deployments is particularly critical. Traditional 

model deployment processes, including code packaging, dependency installation, and environment configuration, 

are prone to errors and highly inefficient. Containerization technologies, such as encapsulating model code into 

Docker images [8], provide an effective means to realize Models-as-a-Service (MaaS). To further enhance the 

efficiency of updates and deployments, it is essential to simplify and automate multiple related steps, including 

model training, validation, packaging, and deployment. At this juncture, Continuous Integration and Continuous 

Deployment (CI/CD) become crucial [9-11]. Although current CI/CD pipelines are predominantly designed to 

automate the integration of software code, there is a lack of effective tools and mechanisms for integrating 

machine learning models. To address this gap, it is necessary to develop custom model metadata descriptions and 
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deployment scripts that support the packaging and deployment of models, which are key to enabling rapid updates 

of intelligent model services. 

Existing tools such as Kubeflow [12] and MLflow [13], while widely used in the Machine learning operations 

(MLOps) field [14], have certain limitations when addressing frequent model updates and deployments in 

microservices architectures. Kubeflow, despite its high scalability and support for complex workflows, has a 

complex deployment process and lacks flexibility, especially in handling rapid iterations and updates, involving 

lengthy resource configuration and management steps. MLflow, while simplifying the development process of 

machine learning projects through experiment tracking and model version management, primarily caters to 

standalone project management and struggles to cope with high-frequency automated updates in microservices 

architectures, lacking fine-grained deployment control and model packaging optimization. Researchers like Satvik 

Garg et al. [15] have discussed the implementation of CI/CD pipelines in MLOps methods, while Mattia Antonini 

and others have concentrated on Tiny-MLOps [16], focusing on the orchestration of ML applications in IoT 

systems. Although these studies provide valuable insights, they primarily focus on theoretical analysis or 

applications within specific domains. In contrast, this paper is more concerned with the implementation of 

frameworks that are quick to deploy and broadly applicable. 

This paper proposes a framework that addresses these limitations, optimizing the automated encapsulation and 

rapid deployment of intelligent models in microservices environments, significantly enhancing update efficiency 

and flexibility. By integrating support from Kubernetes and GitLab, this paper designs and implements an 

automated model management prototype system, simplifying the management and deployment processes of 

models under microservices architectures. Experimental validation shows that the system is not only highly 

practical but also identifies bottlenecks in packaging and deployment through detailed performance testing, 

providing directions for future optimization. 

The primary contributions of this paper are described as follows: 

 The proposal and implementation of an automated model management framework that overcomes the 

shortcomings in flexibility and rapid updating found in existing tools, particularly suited for high-

frequency iteration scenarios in microservices architectures. 

 The design and implementation of a prototype system that validates the practicality of the framework and 

is supported by experimental data for effective deployment in real-world settings. 

 Detailed performance analysis that identifies bottlenecks in model packaging and deployment processes, 

offering optimization strategies for rapid model updates in microservices environments. 

RELATED WORK 

This section explores the current state of machine learning model management, with a particular focus on its 

practical applications, challenges, and trends across various domains. 

Evolution from DevOps to MLOps 

DevOps optimizes the entire software development lifecycle, including development, testing, deployment, 

updates, and operational maintenance. By implementing Continuous Integration and Continuous Deployment, 

DevOps significantly accelerates software delivery and enhances quality [17,18]. The machine learning field has 

adopted these DevOps principles, evolving into MLOps, which focuses on automating the development, 

deployment, and maintenance of machine learning models to meet the needs for continuous iteration and 

optimization, especially enabling rapid adaptation to data changes and business strategy adjustments [19,20]. 

Continuous software engineering has become an emerging practice, emphasizing rapid feedback and frequent 

deployments to maintain agile responses to changing business needs. This process is supported by continuous 

integration, where code is frequently integrated into shared repositories, and continuous delivery, which ensures 

that code is always in a production-ready state [21,22]. These practices, combined with the principles of DevOps, 

lay the foundation for MLOps, which extends these methods to the machine learning domain, enabling faster 

model updates and improvements [11,23,24]. 
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Challenges in MLOps 

Managing machine learning models involves complex challenges, particularly in the areas of data acquisition, 

model training, deployment, and the iterative nature of model improvements. Traditional AI development often 

encounters issues such as complex dependencies and coupling between models, which can hinder the efficient 

management and scalability of models [25]. MLOps addresses these issues by providing structured workflows that 

not only streamline the development processes but also facilitate effective lifecycle management of models. The 

machine learning lifecycle typically includes business objective definition, data collection, model training, and 

deployment, and MLOps helps automate these steps [26,27]. A key challenge in machine learning lifecycle 

management is its continuous nature—models must be iterated and updated frequently based on changing data 

patterns, which differs from traditional software systems where long-term stability after deployment is expected 
[28-30]. 

Advanced MLOps Tools and Platforms 

To support the end-to-end lifecycle of machine learning models, advanced tools like Kubeflow [12] and MLflow 
[13] have been developed. Kubeflow, an open-source platform based on Kubernetes, supports various machine 

learning operations from data validation to model serving, enabling machine learning workflows to operate 

seamlessly on any microservices platform equipped with Kubeflow [12,31,32]. MLflow simplifies the development 

and management of machine learning projects by focusing on aspects such as experiment tracking and model 

version management, critical for maintaining the integrity and efficacy of machine learning models over time [13]. 

However, despite their capabilities, these platforms often exhibit limitations in flexibility, struggling to adapt 

workflows based on specific needs or integrate with new tools and practices, which can impede the ability to tailor 

processes to evolving project requirements [33]. 

AUTOMATED ENCAPSULATION AND DEPLOYMENT ARCHITECTURE 

In this study, we developed an automated model management system designed to address the challenges of 

updating and managing models and services within a microservices architecture. This system is composed of two 

core components: model encapsulation and deployment, enabling developers to conveniently manage the entire 

lifecycle of models. The overall system architecture is illustrated in Figure 1, which provides a visual 

representation of the components and their interactions within the system. The system's design aims to enhance 

the level of automation in model deployment, reduce the input of human resources, and ensure the speed and 

quality of updates. This section highlights the core technologies and working principles of model encapsulation, 

which are crucial for achieving rapid deployment and efficient operation of models. 

 

Figure 1. The architecture overview of automated encapsulation and deployment system 

Model Encapsulation Component 

The design of the model encapsulation component aims to create a unified and scalable method to support the 

consistent management and deployment of models with various architectures and functionalities within a 

microservices platform. The adopted technological strategy should ensure the efficiency of the encapsulation 

process and the convenience of subsequent model deployment. For this purpose, we have chosen Docker 
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containerization technology, which not only provides an independent and secure operating environment for 

models but also significantly simplifies the complexity of deployment and maintenance. 

During the encapsulation process, the first step is to decouple the model code from the business logic code to 

ensure the independence and flexibility of the model. This decoupling allows each model to be encapsulated into 

a separate Docker image and deployed on any Docker-supported microservices platform. Once deployed, the 

model interacts with external modules via REST APIs, enabling dynamic invocation of its functions and adaptive 

detection and maintenance of services. 

To accommodate different types of service models, we employ a more general model encapsulation technique 

that involves the use of a specific Python Class for pre-packaging the models. This pre-packaging Python Class 

serves two main purposes: 

Initialization and Parameter Loading: The Python Class aids in initializing the model and loading pre-trained 

parameters. This relies on the model’s configuration files and pre-trained parameter files to ensure the reliability 

of the model. This step effectively prevents the redundant loading of training parameters, thereby enhancing the 

efficiency and speed of the model. 

 

Figure 2. Process of model packaging and deploying component 

Input Processing and Output Generation: Additionally, the Python Class can receive input and produce 

corresponding outputs. This capability allows us to encapsulate the model into a form that can be called by external 

services. 

The working principle of the model encapsulation component is illustrated in Figure 2 part ①. 

Technical Implementation Details 

Decoupling and Service-Oriented Encapsulation: Initially, model code is decoupled from business logic code to 

ensure that the model can be updated and optimized independently of the existing services. Once decoupled, the 

model is encapsulated into a separate Docker image, allowing it to function as an independent microservice unit. 

Unified Encapsulation Rules: We have developed a set of unified model encapsulation rules that define the entire 

process from model preparation to encapsulation completion. This includes pre-processing of the model, 

configuration of the dependency environment, and the final output format of the encapsulation. These 

encapsulation rules are primarily implemented through a GitLab Runner that runs on a microservice platform, 

with the core component being a base GitLab Runner image that supports Docker-in-Docker (DinD). This setup 

allows for the execution of encapsulation tasks within isolated Docker containers. 

The process is controlled by the Dockerfile and executed via .gitlab-ci.yml in the GitLab repository. Upon 

submission, the GitLab Runner is triggered, following the defined steps in the .gitlab-ci.yml and Dockerfile to 

handle dependencies, package the model, and push the final image for deployment. 
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Our approach stands out by using Docker-in-Docker for task isolation and integrating fully with GitLab CI/CD 

for automated workflows. It’s tailored for microservice architectures, offering modular, scalable management of 

models. 

Application of Pre-encapsulation Technology: A specially developed Python class is used for model pre-

encapsulation. This class is responsible for initializing the model, loading pre-trained parameters, and setting up 

the model's input and output interfaces. Pre-encapsulation not only optimizes the execution efficiency of the model 

within the container but also simplifies subsequent deployment and maintenance tasks. 

Docker Encapsulation Process: After pre-encapsulation, the model is encapsulated through a specific Dockerfile. 

This Dockerfile configures all necessary environmental variables and includes the required libraries and runtime 

settings. During the encapsulation process, the Dockerfile also sets up network and storage interfaces to ensure 

that the model image can operate stably in different environments. 

Management and Maintenance of Model Images: Once encapsulation is complete, the model images are uploaded 

to an image repository, which supports rapid iteration and deployment of model versions. The use of the image 

repository not only enhances the efficiency of model deployment but also facilitates model rollback and version 

control. 

Based on the aforementioned technologies, the model encapsulation component not only improves the deployment 

speed and reliability of models but also ensures the scalability of the system and the convenience of maintenance. 

This efficient encapsulation technology provides robust technical support for the rapid iteration and stable 

operation of models. 

Model Deployment Component 

In this system, the model deployment component is primarily responsible for deploying machine learning models 

as production-level REST microservices using Docker images on a Kubernetes platform. This component not 

only manages the deployment process but also ensures the scalability of services and the continuous maintenance 

of API functionalities. 

Technical Implementation and Principles: The model deployment component utilizes Kubernetes Custom 

Resource Definitions (CRD) to deploy model images. The deployment process is configured through parameters 

defined in a YAML configuration file, including the service name, Docker image, and the namespace in which it 

operates. The working principle of the model deployment component is illustrated in Figure 2 part ②. Below are 

the technical principles and key steps of the model deployment process: 

Configuration Parsing and Submission: The YAML configuration file is submitted using the Kubernetes 

command-line tool, Kubectl. This file is initially sent to the Master node of the Kubernetes cluster. 

Resource Scheduling: Upon receiving the YAML file, the Master node's Kube-Apiserver stores it in Etcd. 

Subsequently, the Kube-Scheduler is responsible for parsing the configuration file and deciding on the most 

suitable worker node for Pod deployment based on the cluster's resource utilization and the requirements specified 

in the file. 

Pod Creation and Deployment: The Kube-Apiserver notifies the Kube-Controller-Manager of the scheduling 

decision, which then instructs the Kubelet on the worker node to create a Pod. The Kubelet invokes the node’s 

Container Runtime to pull the specified Docker image and create the container, ultimately forming the Pod. 

This deployment mechanism not only ensures the flexibility and scalability of model deployment but also 

optimizes the operational efficiency and stability of model services through automated container management. 

Once deployed, the model service is exposed on the port set during the encapsulation phase, allowing external 

services to interact with the model via REST APIs. 

Continuous Integration and Continuous Deployment 

The model deployment component also integrates capabilities for Continuous Integration (CI) and Continuous 

Deployment (CD), which are crucial for agile development. We utilize GitLab CI as the automation tool, 

managing the packaging and deployment of models through scripts defined in the .gitlab-ci.yml file. Whenever a 
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new model file is committed to the GitLab repository, the GitLab CI Runner automatically triggers the defined 

workflow, enabling the automatic update and deployment of the model. This automated process significantly 

enhances the efficiency of model deployment, ensuring that model services can rapidly respond to changes in 

business requirements. 

 

Figure 3. CI/CD-Based model packaging and deployment wrkflow diagram 

Figure 3 illustrates the principle of the CI/CD-based model packaging and deployment process, providing a 

detailed visual representation of how components interact within the deployment pipeline. In the packaging 

process, the first step involves creating a model repository in GitLab, followed by configuring the GitLab Runner, 

which will handle the execution of CI/CD tasks. The packaging steps are defined in the .gitlab-ci.yml file within 

the repository. Once these configurations are in place, whenever a new model submission is detected, GitLab will 

automatically execute the packaging and image creation process as outlined in the YAML file. It will also push 

the built images to the appropriate registry and trigger the deployment process. 

Similar to the packaging process, the deployment steps must also be defined in the same .gitlab-ci.yml file, 

specifying the deployment procedures and parameters. After the packaging process is completed and the 

deployment process is triggered, GitLab will initiate the configured runner to execute the defined deployment 

tasks, ensuring that the updated model is deployed successfully. 

The use of GitLab CI/CD, combined with Docker-in-Docker (DinD), ensures an isolated and automated workflow 

for model packaging and deployment. This approach minimizes manual intervention and guarantees consistency 

in the execution environment. The system allows dynamic updates, automatically detecting new model 

submissions and triggering the complete CI/CD pipeline from packaging to deployment. This guarantees that the 

models are always up-to-date and that the integration with the microservices platform supports scalability and 

high availability. 

Additionally, the deployment process is fully customizable, as it is defined within the .gitlab-ci.yml file. This 

enables teams to tailor the pipeline to specific project needs, allowing for flexibility in handling diverse 

environments, dependencies, or infrastructure changes. This adaptability and automation set our approach apart 

from traditional model deployment strategies, which often require more manual intervention and lack flexibility. 

Through this highly automated deployment process, the system effectively manages and maintains models 

deployed on the microservices platform, while ensuring the high availability and scalability of model services. 

EXPERIMENT 

We conducted experiments on a microservices cluster built on a Kubernetes framework to validate our prototype 

system. Preliminary tests were carried out on the main functional components of the system. 
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Experimental Setup and Results 

We deployed a Kubernetes cluster with ten nodes on local service machines; the cluster ran Kubernetes version 

v1.20.6. We managed the Kubernetes cluster using Rancher. In the cluster, we deployed Harbor to serve as the 

repository for models and model images. We developed GitLab as a repository for models and configuration files. 

Additionally, we deployed GitLab Runner within the cluster and configured it for packaging and deploying 

models. 

In our study, we evaluated four distinct models tailored for different aspects of service operations within a 

microservices architecture. These included two models designed for multi-dimensional time series prediction: an 

LSTM model and a Transformer model. Additionally, a graph neural network (GNN) model was tested for its 

capability in classifying service nodes, addressing unique challenges in network management and service 

distribution. We also incorporated a Proximal Policy Optimization (PPO) model, which is used for service auto-

scaling in microservices. 

Table 1. Time consumption and percentage distribution of packaging and deployment processes 

 
Packaging Process Deployment Process Total 

Time (s) Percentage (%) Time (s) Percentage (%) Time (s) 

LSTM 365 88.2 49 11.8 414 

Transformer 491 85.4 84 14.6 575 

GNN 305 81.1 71 18.9 376 

PPO 336 85.5 57 14.5 393 

 

A model repository was prepared for these pre-trained LSTM, Transformer, GNN, and PPO models, with specific 

attention given to configuring packaging and deployment parameters to reflect their operational use cases. We 

meticulously documented the time expended on each process step, with detailed results presented in Table 1 to 

demonstrate the efficiency of each phase. 

As depicted in Table 1, the packaging phase consumed the majority of the time, representing over 80% of the total 

time spent preparing the models for deployment. This phase was primarily extended due to the need for 

downloading extensive dependencies and constructing Docker images, which were subsequently pushed to the 

repository. 

In contrast, the deployment phase proved much quicker, benefiting significantly from the local storage of model 

images which expedited the retrieval process. This highlights the advantages of local image storage in reducing 

deployment times. 

The variability in time requirements across the models primarily stemmed from their dependency loads. Models 

with more complex dependencies required more setup time, and network speed variations further influenced these 

durations. 

The exact execution times for each step of the packaging and deployment processes have been recorded, and the 

results are displayed in Figure 4. During the packaging phase, environment preparation and task script execution 

are the two most time-consuming steps. In contrast, during the deployment phase, most of the time is spent on 

environment preparation. We also calculated the percentage of time spent on each step, and the results are shown 

in Table 2. 
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(a) Packaging pipelines 

 

(b) Deployment pipelines 

Figure 4. Execution time for each step of packaging and deployment pipelines 

The experimental data reveals that task script execution constitutes over 60% of the total time spent during the 

image packaging process. This phase primarily involves setting up the environment, installing dependencies, and 

constructing Docker images, all guided by configurations specified in the .gitlab-ci.yml file. This significant 

portion suggests that enhancing script efficiency could notably decrease overall packaging time. 

Conversely, more than half of the deployment process time is dedicated to environment preparation, which 

includes creating and running runner Pods, pulling images, and starting up services. This phase's duration is 

largely dependent on the Kubernetes cluster's network conditions, highlighting a critical area for potential 

improvement. 

To streamline these processes, we propose several optimization strategies: 

Implementing a Shared Container Cache: By establishing a shared container cache within the Kubernetes cluster, 

we can effectively bypass the time-consuming image pulling steps, thereby accelerating the deployment process. 

Pre-constructed Base Images: Developing base images pre-loaded with common dependencies and environment 

configurations can drastically reduce the setup time during the packaging phase. This approach minimizes the 

need for repeated installations and configurations across different deployment cycles, enhancing both efficiency 

and consistency. 

Table 2. Main process time consumption and percentage in packaging and deployment phases 

Model 
Packaging Pipeline Deployment Pipeline 

LSTM Transformer GNN PPO LSTM Transformer GNN PPO 

Environment Preparation 

(s) 
113 183 95 107 30 58 43 37 

Percentage (%) 31.0% 37.3% 31.1% 31.8% 61.2% 69.0% 60.6% 64.9% 

Source Code Retrieval (s) 8 11 9 9 5 8 9 4 

Percentage (%) 2.2% 2.2% 3.0% 2.7% 10.2% 9.5% 12.7% 7.0% 

Task Script Execution (s) 243 295 199 217 11 16 15 13 

Percentage (%) 66.6% 60.1% 65.2% 64.6% 22.4% 19.0% 21.1% 22.8% 

Project Cleanup (s) 1 2 2 3 3 2 4 3 

Percentage (%) 0.3% 0.4% 0.7% 0.9% 6.1% 2.4% 5.6% 5.3% 

 

To verify the effectiveness of this optimization, we conducted a simple test experiment using a pre-constructed 

base image based on the Transformer model. We built a base image that includes commonly used dependencies 

for such models, such as PyTorch, NumPy, and Scikit-learn. In the traditional method, dependencies and 

environment configurations had to be reinstalled for each packaging cycle, whereas the use of a pre-constructed 

image significantly reduced the packaging time. Experimental results showed that using the pre-constructed base 

image reduced the packaging time by over 40%, which not only improved overall efficiency but also eliminated 

potential inconsistencies caused by manual configurations. 
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These strategic improvements aim to not only speed up the deployment process but also ensure that the system, 

when handling complex tasks, can be updated and deployed with greater agility and fewer delays. This 

optimization is crucial for maintaining high performance in dynamic service environments, ensuring that the 

system remains robust and responsive to operational demands. 

Based on the experimental results, the model management system implemented in this paper is capable of 

completing the automatic packaging and deployment of models in a relatively short period. Furthermore, the 

above process can be automatically initiated after initial configuration without manual intervention, greatly 

enhancing the convenience and efficiency of model updates and demonstrating the potential of the proposed model 

management framework. 

CONCLUSION 

The experimental results demonstrate that our automated model management system significantly optimizes the 

deployment and maintenance of machine learning models within a Kubernetes-based microservices framework. 

The packaging and deployment processes are notably accelerated, with packaging consuming the majority of the 

total time due to dependency management and image construction. Deployment times are minimized due to 

efficient local image retrieval strategies and the streamlined configuration of Kubernetes resources. By integrating 

tools like GitLab CI, the system supports agile development practices, offering rapid and reliable model updates. 

This study not only confirms the feasibility of the proposed model management framework but also highlights its 

potential to facilitate robust and scalable machine learning operations in cloud-native environments. 
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