Computer Fraud and Security
ISSN (online): 1873-7056

Advanced Caching Strategies for High-Throughput Large Language
Model Serving

Bhaskar Goyal
University of Southern California, USA

Abstract

The deployment of Large Language Models (LLM) in enterprise applications faces significant
computational and economic challenges due to their substantial resource requirements and inference
latency. This technical review explores innovative caching strategies that transcend traditional methods to
enhance LLM serving efficiency through prompt caching techniques. Prompt caching represents a
paradigm shift from output-based to process-based optimization by storing intermediate computational
states generated during transformer inference, enabling the reuse of cached states for subsequent requests
with similar prompt patterns. The implementation involves sophisticated state management mechanisms
that handle multi-dimensional transformer computations, including attention weights, hidden
representations, and positional encodings across hierarchical cache structures. Cache invalidation logic
addresses the probabilistic nature of LLM generation while managing dependencies across transformer
layers, requiring advanced dependency tracking mechanisms to maintain cache integrity. Memory
management strategies employ dynamic compression techniques and predictive allocation algorithms to
handle variable-length cached states efficiently. Distributed serving integration demands sophisticated
coherence protocols, intelligent load balancing, and fault tolerance mechanisms to maintain consistency
across multiple serving nodes. Performance optimization demonstrates substantial improvements in latency
reduction, computational cost savings, and memory efficiency while supporting sustainable Al deployment
through reduced energy consumption and carbon footprint.

Keywords: Prompt caching, transformer states, distributed serving, cache coherence, memory optimization

1. Introduction

The rapid adoption of Large Language Models (LLMs) in production environments has created unprecedented challenges
in computational efficiency and resource management. Modern transformer-based architectures with parameter counts
reaching hundreds of billions require substantial computational resources for inference operations, directly impacting
both response latency and operational costs [1]. The computational complexity of these models necessitates sophisticated
memory management strategies, with large-scale models requiring hundreds of gigabytes of GPU memory using standard
precision formats [2]. Traditional caching mechanisms, primarily designed for web applications and database systems,
prove inadequate when applied to the unique characteristics of LLM inference patterns due to their stateless nature and
inability to capture intermediate computational states.

The fundamental challenge lies in LLM processing, where each token generation involves complex matrix operations
across multiple transformer layers, creating computational bottlenecks that scale linearly with both prompt length and
model size [1]. Contemporary transformer architectures typically employ dozens of attention layers, each performing
computationally intensive operations that require significant floating-point calculations. The autoregressive nature of
language generation means that processing time increases proportionally with sequence length, creating substantial
latency challenges for applications requiring real-time responses. Unlike traditional web caching, where identical
requests yield identical responses, LLM inference involves probabilistic generation where slight variations in input
parameters, sampling strategies, or temperature settings can lead to significantly different computational paths, resulting
in extremely low cache hit rates when using conventional output-based caching strategies.

This technical review examines the emerging field of advanced caching strategies specifically designed for LLM serving
architectures. The focus centers on prompt caching techniques that capture and reuse intermediate computational states,
representing a paradigm shift from output-based caching to process-based optimization. These innovative approaches
leverage the hierarchical structure of transformer computations to identify reusable computational segments, enabling
significant performance improvements for workloads with repetitive prompt patterns [2]. Such strategies promise to
address the dual challenges of reducing inference latency while maintaining the flexibility and accuracy that make LLMs
valuable for enterprise applications.

82
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

The significance of this research extends beyond mere performance improvements, as organizations increasingly rely on
LLMs for critical business functions where economic sustainability becomes paramount [1]. Advanced caching strategies
offer a pathway to democratize access to powerful language models by reducing the computational barriers that currently
limit their deployment scale, potentially transforming the economics of large-scale language models serving through
intelligent reuse of computational resources [2].

2. Prompt Caching Fundamentals and Architecture

Prompt caching represents a fundamental departure from traditional caching methodologies by focusing on the
intermediate computational states generated during LLM inference rather than final outputs. The core principle involves
identifying and storing the hidden states, attention patterns, and key-value pairs computed for specific prompt segments,
enabling their reuse in subsequent requests that share common prefixes or structural similarities. Contemporary
transformer architectures generate substantial intermediate states during processing, with memory requirements scaling
significantly based on sequence length and model depth [3]. The computational overhead of reconstructing these states
from scratch creates measurable latency penalties, while cached state retrieval substantially reduces processing time
through the elimination of redundant computations.

The architectural foundation of prompt caching systems requires sophisticated state management mechanisms that can
handle the multi-dimensional nature of transformer computations effectively. Unlike conventional caches that store
simple key-value pairs, prompt caches must maintain complex hierarchical structures representing the multi-layered
computation states of transformer models. Each cached entry contains layer-specific information, including attention
weights, hidden representations, and positional encodings that can be precisely reconstructed during cache hits. The
memory footprint for storing complete intermediate states scales with both sequence length and model complexity,
requiring careful optimization strategies to balance storage efficiency with retrieval performance.

Implementation challenges arise from the need to balance cache granularity with storage efficiency, where different
approaches yield significantly different performance characteristics across various workload types. Fine-grained caching
at the token level maximizes reuse opportunities for conversational and interactive workloads, but creates substantial
memory overhead due to the detailed state information required for each cached token. Conversely, coarse-grained
caching at the prompt level reduces storage requirements significantly but limits applicability to exact matches, reducing
effectiveness for diverse input patterns. Advanced implementations employ hybrid approaches that dynamically adjust
granularity based on prompt characteristics and historical usage patterns, utilizing sophisticated hashing techniques to
optimize both storage efficiency and cache effectiveness [4].

The integration of prompt caching with existing transformer architectures requires careful consideration of model-
specific optimizations, as different architectures exhibit varying computational profiles and memory access patterns.
Modern transformer variants with multi-head attention mechanisms allocate substantial computational resources to
attention operations, making attention state caching particularly beneficial for performance optimization. The challenge
intensifies when considering fine-tuned models where cached states from base models may not directly transfer due to
parameter modifications, requiring validation mechanisms that can detect compatibility while maintaining efficient
verification processes.

Memory management within prompt caching systems demands sophisticated algorithms to handle the temporal and
spatial locality patterns unique to LLM inference, where traditional cache management approaches prove inadequate.
Conventional cache replacement algorithms demonstrate limited effectiveness for prompt-based workloads, where access
patterns follow complex linguistic and semantic relationships rather than simple temporal sequences. Advanced
implementations incorporate semantic similarity metrics and prompt structure analysis to optimize cache retention
decisions, achieving superior performance through intelligent cache management strategies that prioritize semantically
relevant cached states.

Caching Approach Technical Characteristics Performance Impact

. High memory overhead but maximizes
Fine-Grained Token- | Individual token state storage with & v .. .
reuse opportunities for conversational

Level detailed metadata and indexing structures

workloads
Coarse-Grained Complete prompt segment caching with Lower storage overhead, but limited to
Prompt-Level reduced storage requirements per segment | exact matches with reduced effectiveness

83
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

Optimized storage efficiency while

Hybrid Dynamic Adaptive granularity adjustment based on o .
Granularit rompt characteristics and usage patterns maintaining cache effectiveness above
Y promp gep baseline thresholds
e Embedding-based clustering with Superior hit rates through semantic
Semantic Similarity- . . . T C
Based intelligent cache retention using linguistic | relevance prioritization over temporal
ase . .
relationships sequences
. . Layer-specific attention weight and Substantial computational resource
Multi-Head Attention . yersp . 8 . . p . .
Cachi hidden representation storage for allocation optimization for attention-
achin . .
& transformer architectures heavy operations

Table 1: Comparative Analysis of Caching Granularity Approaches in LLM Serving [3, 4]

3. Cache Invalidation Logic and Memory Management

The development of effective cache invalidation logic for prompt caching systems presents unique challenges that
distinguish it from traditional caching scenarios. The primary complexity stems from the probabilistic nature of LLM
generation, where cached intermediate states must remain valid across different sampling parameters, temperature
settings, and generation strategies while avoiding stale or inconsistent results. Contemporary systems must handle
invalidation events occurring at significant frequencies during typical inference workloads, with each invalidation event
potentially affecting multiple dependent cache entries throughout the system [5]. The computational overhead of
validation checks requires careful optimization to maintain efficient total validation times for cache hierarchies
containing substantial numbers of entries.

Cache invalidation strategies must account for the hierarchical dependencies inherent in transformer computation, where
dependency chains can extend across numerous transformer layers in modern architectures. When a cached prompt
segment becomes invalid, all dependent computational states in subsequent layers and positions require synchronized
invalidation, creating cascading effects that can invalidate substantial portions of related cache entries in complex
dependency scenarios. This cascading effect necessitates sophisticated dependency tracking mechanisms that maintain
the integrity of cached states while minimizing unnecessary invalidations that could degrade cache effectiveness from
optimal performance levels to suboptimal rates. Advanced tracking systems utilize graph-based dependency structures
that can process invalidation cascades efficiently for typical cache hierarchies containing extensive entry collections.
Memory footprint management for long and complex prompts introduces additional architectural considerations,
particularly for extended conversations or comprehensive document processing tasks. Extended conversations, document
processing tasks, and multi-turn interactions can generate cached states that consume substantial memory resources for
comprehensive interaction histories, requiring sophisticated management strategies to prevent memory exhaustion.
Effective management requires dynamic compression techniques that preserve essential information while reducing
storage overhead significantly, utilizing learned compression methods that leverage the statistical properties of
transformer hidden states [6]. These compression algorithms typically achieve substantial compression ratios while
maintaining high reconstruction accuracy and introducing minimal decompression latencies per cached segment.

The temporal dynamics of cache invalidation must consider the evolving nature of LLM deployments, where model
updates occur with varying frequencies ranging from regular fine-tuning adjustments to major architectural updates.
Model updates, fine-tuning operations, and parameter adjustments can render existing cached states incompatible, with
compatibility rates varying significantly depending on the extent of model modifications. Advanced systems implement
versioning mechanisms that allow gradual cache migration during model updates, typically completing migration
processes efficiently for large-scale cache systems, minimizing service disruption while maintaining performance
benefits.

Memory allocation strategies for prompt caching systems require careful optimization to handle the variable-length
nature of cached states, where individual cache entries exhibit significant size variations depending on prompt
complexity and context length. Traditional fixed-size allocation schemes prove inefficient for the heterogeneous memory
requirements of different prompt types, resulting in substantial memory waste due to internal fragmentation. Dynamic
allocation with predictive sizing based on prompt characteristics and historical usage patterns offers improved memory
utilization rates while maintaining consistent access performance with efficient retrieval times.

84
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

Management Implementation
g Primary Challenge Technical Solution Impact P)
Component Complexity
Probabilistic LLM oy . i . .
Cache . . Advanced validation Efficient validation High - requires
oy generation validity
Invalidation . checks with dependency | times for extensive sophisticated state
. across sampling
Logic tracking mechanisms cache hierarchies management
parameters
L L Graph-based Maintains cache .
. . Cascading invalidation P . . . Very High - complex
Hierarchical dependency structures integrity while .
. effects across . L multi-layer
Dependencies for processing minimizing unnecessary .
transformer layers . oy . g coordination
invalidation cascades invalidations
. Dynamic compression
Memory Extended conversations Y . P . Substantial compression | Medium-High -
. . . techniques leveraging
Footprint consuming substantial . ratios with minimal learned compression
transformer hidden .
Management memory resources states decompression latency methods
Temporal Model updates rendering | Versioning mechanisms | Efficient migration High - requires
Cache cached states enabling gradual cache processes with minimal | compatibility
Dynamics incompatible migration service disruption detection systems
Variable-length cached . . . Improved memo . .
Memory . & Dynamic allocation with p . . t Medium - predictive
: states with C utilization with)
Allocation predictive sizing . algorithms based on
. heterogeneous . consistent access
Strategies . algorithms usage patterns
requirements performance

Table 2: Computational and Storage Optimization Techniques in Advanced Caching Systems [5, 6]

4. Distributed Model Serving Integration

The integration of advanced caching strategies into distributed model serving architectures requires careful consideration
of consistency, scalability, and fault tolerance requirements across multiple serving nodes. Unlike traditional distributed
caches that handle independent data objects, prompt caching systems must maintain coherent computational states across
multiple serving nodes while accommodating the stateful nature of LLM inference. Modern distributed LLM serving
clusters typically span numerous nodes, with each node managing substantial amounts of cached transformer states,
requiring sophisticated coordination mechanisms to maintain consistency across the distributed cache hierarchy [7].
Network latency between nodes in optimized data center environments directly impacts the effectiveness of distributed
cache coordination protocols and overall system performance.

Distributed cache coherence protocols for prompt caching must address the unique challenges posed by the hierarchical
and interdependent nature of cached transformer states. Traditional cache coherence mechanisms require significant
adaptation to handle the complex invalidation cascades that occur when cached prompt segments are updated or
invalidated across distributed nodes. Advanced implementations employ vector clock mechanisms and semantic
versioning to track state dependencies across distributed nodes, with coherence protocols capable of processing
substantial volumes of coherence messages across typical cluster configurations. The overhead of maintaining coherence
adds measurable latency to cache access times but ensures consistency across distributed transformer state hierarchies,
which is essential for maintaining inference accuracy.

Load balancing strategies in distributed LLM serving environments must account for cache locality to maximize the
effectiveness of prompt caching across serving nodes. Simple round-robin or least-connection strategies may result in
substantial cache miss rates, significantly negating the performance benefits of distributed caching systems. Intelligent
routing algorithms consider cache hit probability, current cache state distribution, and load characteristics to optimize
request placement across serving nodes, achieving improved cache hit rates while maintaining balanced load distribution
across cluster nodes [8]. These sophisticated routing decisions require additional processing time but substantially
improve overall system throughput and resource utilization efficiency.

The architecture of distributed prompt caching systems requires sophisticated replication strategies that balance
consistency requirements with performance objectives across geographically distributed deployments. Synchronous
replication ensures strong consistency but introduces latency overhead that may negate caching benefits, particularly for
latency-sensitive applications requiring rapid response times. Asynchronous replication strategies with eventual

85
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

consistency models offer better performance characteristics with manageable replication delays, but require careful
handling of temporary inconsistencies affecting small percentages of cache operations during normal operation.

Network communication protocols for distributed prompt caching must efficiently handle the transfer of large cached
states between nodes, with individual state transfers varying significantly depending on prompt complexity and
transformer architecture. Standard protocols prove inadequate for the high-frequency, large-payload transfers required in
prompt caching scenarios. Advanced implementations employ specialized protocols with compression, delta encoding,
and streaming capabilities optimized for transformer state transfer, achieving improved throughput rates while reducing
network bandwidth requirements through intelligent compression techniques.

Fault tolerance mechanisms in distributed prompt caching systems must account for the potential loss of cached states
during node failures, which occur periodically in typical data center environments. Robust implementations employ
redundant storage strategies and state reconstruction mechanisms that ensure service continuity during failures,
maintaining high cache availability while enabling rapid recovery from node failures.

System
y Primary Challenge Technical Solution Performance Impact
Component
) L) Measurable latency overhead
Complex invalidation Vector clock mechanisms) Y
Cache to cache access times but
cascades across hierarchical | and semantic versioning to .
Coherence . . ensures consistency across
and interdependent cached track state dependencies ..
Protocols o distributed transformer state
transformer states across distributed nodes . .
hierarchies
Simple round-robin Intelligent routin .
P . . .g .g . Improved cache hit rates and
Load strategies result in algorithms considering . .
. balanced load distribution with
Balancing substantial cache miss rates | cache hit probability, state . .
. . . : . additional processing time
Strategies negating distributed caching | distribution, and load)
.. requirements
benefits characteristics
Balancing consistenc Synchronous replication
. 8 . ¥ 4 'p Latency overhead versus
. requirements with for strong consistency
Replication . better performance
. performance objectives versus asynchronous . .
Architecture .)) characteristics with
across geographically strategies with eventual ..
. . manageable replication delays
distributed deployments consistency models
Standard protocols Specialized protocols with | Improved throughput rates
Network inadequate for high- compression, delta while reducing network
Communicatio | frequency, large-payload encoding, and streaming bandwidth requirements
n Protocols transfers with varying state | capabilities optimized for | through intelligent
complexity transformer states compression

Table 3: Advanced Caching Architecture Solutions for Multi-Node LLM Serving Environments [7, 8]

5. Performance Optimization and Cost Analysis

The quantitative assessment of performance improvements achieved through advanced caching strategies requires
comprehensive evaluation frameworks that consider multiple dimensions of LLM serving efficiency. Traditional metrics
like cache hit rates and response latency provide incomplete pictures of the complex performance characteristics
exhibited by prompt caching systems. Advanced evaluation approaches incorporate computational cost reduction,
memory efficiency improvements, and end-to-end user experience metrics, with comprehensive benchmarking revealing
substantial performance improvements across different workload categories [9]. Modern evaluation frameworks measure
numerous distinct performance indicators, including token generation throughput, memory bandwidth utilization, cache
coherence overhead, and request queuing delays, to provide holistic performance assessments that capture the
multifaceted nature of caching system optimization.

86
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

Latency optimization through prompt caching demonstrates significant improvements across various LLM serving
scenarios, with time-to-first-token reductions showing substantial benefits for requests with cached prefixes in production
deployments. Empirical studies indicate that well-designed prompt caching systems can achieve considerable reductions
in initial response latency, with even greater improvements for subsequent tokens in cached sequences compared to cold
inference scenarios. These improvements compound exponentially in interactive scenarios where conversation context
can be extensively cached and reused, with multi-turn conversations showing cumulative latency reductions that increase
progressively after the initial exchange. Response time consistency improves dramatically, with the standard deviation of
response times decreasing substantially in optimized cached deployments compared to uncached systems.

Computational cost reduction represents one of the most significant benefits of advanced caching strategies, with
organizations reporting substantial reductions in total cost of ownership for LLM serving infrastructure. By avoiding
redundant computation for cached prompt segments, organizations can achieve considerable reductions in GPU
utilization during peak usage periods, with associated energy consumption decreases across typical enterprise workloads.
Economic analysis indicates that prompt caching can reduce serving costs significantly for workloads with substantial
prompt reuse patterns, making LLM deployment economically viable for broader application domains with notable cost
per inference reductions depending on cache hit rates and workload characteristics [10].

Memory efficiency optimization in prompt caching systems requires balancing cache size with hit rate performance, with
optimal configurations typically utilizing substantial portions of available system memory for cache storage. Analysis of
real-world deployment patterns reveals optimal cache sizes that vary significantly based on application characteristics,
user behavior patterns, and model architecture complexity. Dynamic cache sizing algorithms that adapt to changing
workload patterns demonstrate superior performance compared to static allocation strategies, achieving improved
memory utilization while maintaining consistent cache hit rates across diverse workload conditions.

The economic impact of advanced caching strategies extends beyond direct computational cost savings to include
improvements in service quality and user satisfaction metrics. Reduced latency and improved response consistency
contribute to enhanced user experience metrics that translate to measurable business value in commercial deployments,
with user satisfaction scores showing notable improvements in systems with optimized caching. Cost-benefit analysis
indicates that the infrastructure investment required for advanced caching systems typically achieves positive return on
investment within reasonable timeframes for moderate-scale deployments serving substantial daily request volumes.

Optimization Category Performance Characteristics Economic and Operational Impact
Time-to-first-token reductions with Response time consistency
L substantial benefits for cached prefixes | improvements with dramatically
Latency Optimization . . . L o
and exponential improvements in multi- | reduced standard deviation in optimized
turn conversations cached deployments
Considerable reductions in GPU Substantial reductions in the total cost
Computational Cost utilization during peak periods with of ownership make LLM deployment
Reduction associated energy consumption economically viable for broader
decreases across enterprise workloads application domains
Dynamic cache sizing algorithms Optimal configurations utilizing
Memory Efficiency achieve improved memory utilization substantial portions of available system
Optimization while maintaining consistent cache hit memory with cache sizes varying based
rates across diverse conditions on application characteristics
Enhanced user experience metrics Infrastructure investment achieves a
Economic Impact translate to measurable business value positive return on investment within
Assessment with notable improvements in user reasonable timeframes for moderate-
satisfaction scores scale deployments
Cache hit rates are improving in large- Substantial carbon footprint reductions
Scalability and scale systems with multi-tier supporting sustainable Al deployment
Environmental Impact hierarchies, balancing effectiveness goals while maintaining service quality
with coordination overhead standards

Table 4: Quantitative Assessment of LLM Serving Efficiency Through Prompt Caching Strategies [9, 10]

87
Vol: 2026 | Iss: 1 | 2026

Computer Fraud and Security
ISSN (online): 1873-7056

Conclusion

Advanced caching strategies for Large Language Model serving constitute a transformative advancement in addressing

the computational and economic barriers associated with large-scale model deployment. The article on prompt caching

techniques reveals substantial potential for enhancing inference efficiency while preserving the flexibility and accuracy

that make LLMs valuable for enterprise applications. The technical challenges encompassing cache invalidation logic,

memory management, and distributed serving integration demonstrate the complexity inherent in implementing effective

caching solutions for LLM workloads. However, the significant performance improvements and cost reductions achieved

by these strategies justify the implementation complexity and establish a foundation for more sustainable LLM

deployment practices. The integration of sophisticated state management mechanisms, dynamic compression techniques,

and intelligent routing algorithms creates a comprehensive framework for optimizing transformer-based inference

systems. Future developments in this domain should emphasize advancing semantic understanding capabilities for cache

management, exploring opportunities for cross-model cache sharing, and investigating integration possibilities with

emerging LLM architectures. The continued evolution of these techniques will serve a crucial role in democratizing

access to advanced language models and facilitating their broader adoption across diverse application domains,

ultimately contributing to the sustainable and economically viable deployment of computationally intensive Al systems.

References

1. Tom B. Brown, et al, "Language Models are Few-Shot Learners," arXiv, 2020. Available:
https://arxiv.org/abs/2005.14165

2. Samyam Rajbhandari, et al., "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models," arXiv,
2020. Available: https://arxiv.org/abs/1910.02054

3. Noam Shazeer, "Fast Transformer Decoding: One Write-Head is All You Need," arXiv, 2019. Available:
https://arxiv.org/abs/1911.02150

4. Reiner Pope et al., "Efficiently —Scaling Transformer Inference," arXiv, 2022. Available:
https://arxiv.org/abs/2211.05102

5. Ankit Gupta, et al., "Memory-efficient Transformers via Top-Attention," arXiv, 2021. Available:
https://arxiv.org/abs/2106.06899

6. Jordan Hoffmann, et al., "Training Compute-Optimal Large Language Models," arXiv, 2022. Available:
https://arxiv.org/abs/2203.15556

7. Deepak Narayanan, et al., "Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM,"
arXiv, 2021. Available: https://arxiv.org/abs/2104.04473

8. Aakanksha Chowdhery, et al., "PaLM: Scaling Language Modeling with Pathways," arXiv, 2022. Available:
https://arxiv.org/abs/2204.02311

9. Haoli Bai, et al., "Towards Efficient Post-training Quantization of Pre-trained Language Models," arXiv, 2021.
Available: https://arxiv.org/abs/2109.15082

10. Zhuo Li, "Model Compression for Deep Neural Networks: A Survey," Computers, 2023. Available:
https://www.mdpi.com/2073-431X/12/3/60

88
Vol: 2026 | Iss: 1 | 2026

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2106.06899
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2109.15082
https://www.mdpi.com/2073-431X/12/3/60

