
Computer Fraud and Security

ISSN (online): 1873-7056

82

 Vol: 2026 | Iss: 1 | 2026

Advanced Caching Strategies for High-Throughput Large Language

Model Serving

Bhaskar Goyal

University of Southern California, USA

Abstract

The deployment of Large Language Models (LLM) in enterprise applications faces significant

computational and economic challenges due to their substantial resource requirements and inference

latency. This technical review explores innovative caching strategies that transcend traditional methods to

enhance LLM serving efficiency through prompt caching techniques. Prompt caching represents a

paradigm shift from output-based to process-based optimization by storing intermediate computational

states generated during transformer inference, enabling the reuse of cached states for subsequent requests

with similar prompt patterns. The implementation involves sophisticated state management mechanisms

that handle multi-dimensional transformer computations, including attention weights, hidden

representations, and positional encodings across hierarchical cache structures. Cache invalidation logic

addresses the probabilistic nature of LLM generation while managing dependencies across transformer

layers, requiring advanced dependency tracking mechanisms to maintain cache integrity. Memory

management strategies employ dynamic compression techniques and predictive allocation algorithms to

handle variable-length cached states efficiently. Distributed serving integration demands sophisticated

coherence protocols, intelligent load balancing, and fault tolerance mechanisms to maintain consistency

across multiple serving nodes. Performance optimization demonstrates substantial improvements in latency

reduction, computational cost savings, and memory efficiency while supporting sustainable AI deployment

through reduced energy consumption and carbon footprint.

Keywords: Prompt caching, transformer states, distributed serving, cache coherence, memory optimization

1. Introduction

The rapid adoption of Large Language Models (LLMs) in production environments has created unprecedented challenges

in computational efficiency and resource management. Modern transformer-based architectures with parameter counts

reaching hundreds of billions require substantial computational resources for inference operations, directly impacting

both response latency and operational costs [1]. The computational complexity of these models necessitates sophisticated

memory management strategies, with large-scale models requiring hundreds of gigabytes of GPU memory using standard

precision formats [2]. Traditional caching mechanisms, primarily designed for web applications and database systems,

prove inadequate when applied to the unique characteristics of LLM inference patterns due to their stateless nature and

inability to capture intermediate computational states.

The fundamental challenge lies in LLM processing, where each token generation involves complex matrix operations

across multiple transformer layers, creating computational bottlenecks that scale linearly with both prompt length and

model size [1]. Contemporary transformer architectures typically employ dozens of attention layers, each performing

computationally intensive operations that require significant floating-point calculations. The autoregressive nature of

language generation means that processing time increases proportionally with sequence length, creating substantial

latency challenges for applications requiring real-time responses. Unlike traditional web caching, where identical

requests yield identical responses, LLM inference involves probabilistic generation where slight variations in input

parameters, sampling strategies, or temperature settings can lead to significantly different computational paths, resulting

in extremely low cache hit rates when using conventional output-based caching strategies.

This technical review examines the emerging field of advanced caching strategies specifically designed for LLM serving

architectures. The focus centers on prompt caching techniques that capture and reuse intermediate computational states,

representing a paradigm shift from output-based caching to process-based optimization. These innovative approaches

leverage the hierarchical structure of transformer computations to identify reusable computational segments, enabling

significant performance improvements for workloads with repetitive prompt patterns [2]. Such strategies promise to

address the dual challenges of reducing inference latency while maintaining the flexibility and accuracy that make LLMs

valuable for enterprise applications.

Computer Fraud and Security

ISSN (online): 1873-7056

83

 Vol: 2026 | Iss: 1 | 2026

The significance of this research extends beyond mere performance improvements, as organizations increasingly rely on

LLMs for critical business functions where economic sustainability becomes paramount [1]. Advanced caching strategies

offer a pathway to democratize access to powerful language models by reducing the computational barriers that currently

limit their deployment scale, potentially transforming the economics of large-scale language models serving through

intelligent reuse of computational resources [2].

2. Prompt Caching Fundamentals and Architecture

Prompt caching represents a fundamental departure from traditional caching methodologies by focusing on the

intermediate computational states generated during LLM inference rather than final outputs. The core principle involves

identifying and storing the hidden states, attention patterns, and key-value pairs computed for specific prompt segments,

enabling their reuse in subsequent requests that share common prefixes or structural similarities. Contemporary

transformer architectures generate substantial intermediate states during processing, with memory requirements scaling

significantly based on sequence length and model depth [3]. The computational overhead of reconstructing these states

from scratch creates measurable latency penalties, while cached state retrieval substantially reduces processing time

through the elimination of redundant computations.

The architectural foundation of prompt caching systems requires sophisticated state management mechanisms that can

handle the multi-dimensional nature of transformer computations effectively. Unlike conventional caches that store

simple key-value pairs, prompt caches must maintain complex hierarchical structures representing the multi-layered

computation states of transformer models. Each cached entry contains layer-specific information, including attention

weights, hidden representations, and positional encodings that can be precisely reconstructed during cache hits. The

memory footprint for storing complete intermediate states scales with both sequence length and model complexity,

requiring careful optimization strategies to balance storage efficiency with retrieval performance.

Implementation challenges arise from the need to balance cache granularity with storage efficiency, where different

approaches yield significantly different performance characteristics across various workload types. Fine-grained caching

at the token level maximizes reuse opportunities for conversational and interactive workloads, but creates substantial

memory overhead due to the detailed state information required for each cached token. Conversely, coarse-grained

caching at the prompt level reduces storage requirements significantly but limits applicability to exact matches, reducing

effectiveness for diverse input patterns. Advanced implementations employ hybrid approaches that dynamically adjust

granularity based on prompt characteristics and historical usage patterns, utilizing sophisticated hashing techniques to

optimize both storage efficiency and cache effectiveness [4].

The integration of prompt caching with existing transformer architectures requires careful consideration of model-

specific optimizations, as different architectures exhibit varying computational profiles and memory access patterns.

Modern transformer variants with multi-head attention mechanisms allocate substantial computational resources to

attention operations, making attention state caching particularly beneficial for performance optimization. The challenge

intensifies when considering fine-tuned models where cached states from base models may not directly transfer due to

parameter modifications, requiring validation mechanisms that can detect compatibility while maintaining efficient

verification processes.

Memory management within prompt caching systems demands sophisticated algorithms to handle the temporal and

spatial locality patterns unique to LLM inference, where traditional cache management approaches prove inadequate.

Conventional cache replacement algorithms demonstrate limited effectiveness for prompt-based workloads, where access

patterns follow complex linguistic and semantic relationships rather than simple temporal sequences. Advanced

implementations incorporate semantic similarity metrics and prompt structure analysis to optimize cache retention

decisions, achieving superior performance through intelligent cache management strategies that prioritize semantically

relevant cached states.

Caching Approach Technical Characteristics Performance Impact

Fine-Grained Token-

Level

Individual token state storage with

detailed metadata and indexing structures

High memory overhead but maximizes

reuse opportunities for conversational

workloads

Coarse-Grained

Prompt-Level

Complete prompt segment caching with

reduced storage requirements per segment

Lower storage overhead, but limited to

exact matches with reduced effectiveness

Computer Fraud and Security

ISSN (online): 1873-7056

84

 Vol: 2026 | Iss: 1 | 2026

Hybrid Dynamic

Granularity

Adaptive granularity adjustment based on

prompt characteristics and usage patterns

Optimized storage efficiency while

maintaining cache effectiveness above

baseline thresholds

Semantic Similarity-

Based

Embedding-based clustering with

intelligent cache retention using linguistic

relationships

Superior hit rates through semantic

relevance prioritization over temporal

sequences

Multi-Head Attention

Caching

Layer-specific attention weight and

hidden representation storage for

transformer architectures

Substantial computational resource

allocation optimization for attention-

heavy operations

Table 1: Comparative Analysis of Caching Granularity Approaches in LLM Serving [3, 4]

3. Cache Invalidation Logic and Memory Management

The development of effective cache invalidation logic for prompt caching systems presents unique challenges that

distinguish it from traditional caching scenarios. The primary complexity stems from the probabilistic nature of LLM

generation, where cached intermediate states must remain valid across different sampling parameters, temperature

settings, and generation strategies while avoiding stale or inconsistent results. Contemporary systems must handle

invalidation events occurring at significant frequencies during typical inference workloads, with each invalidation event

potentially affecting multiple dependent cache entries throughout the system [5]. The computational overhead of

validation checks requires careful optimization to maintain efficient total validation times for cache hierarchies

containing substantial numbers of entries.

Cache invalidation strategies must account for the hierarchical dependencies inherent in transformer computation, where

dependency chains can extend across numerous transformer layers in modern architectures. When a cached prompt

segment becomes invalid, all dependent computational states in subsequent layers and positions require synchronized

invalidation, creating cascading effects that can invalidate substantial portions of related cache entries in complex

dependency scenarios. This cascading effect necessitates sophisticated dependency tracking mechanisms that maintain

the integrity of cached states while minimizing unnecessary invalidations that could degrade cache effectiveness from

optimal performance levels to suboptimal rates. Advanced tracking systems utilize graph-based dependency structures

that can process invalidation cascades efficiently for typical cache hierarchies containing extensive entry collections.

Memory footprint management for long and complex prompts introduces additional architectural considerations,

particularly for extended conversations or comprehensive document processing tasks. Extended conversations, document

processing tasks, and multi-turn interactions can generate cached states that consume substantial memory resources for

comprehensive interaction histories, requiring sophisticated management strategies to prevent memory exhaustion.

Effective management requires dynamic compression techniques that preserve essential information while reducing

storage overhead significantly, utilizing learned compression methods that leverage the statistical properties of

transformer hidden states [6]. These compression algorithms typically achieve substantial compression ratios while

maintaining high reconstruction accuracy and introducing minimal decompression latencies per cached segment.

The temporal dynamics of cache invalidation must consider the evolving nature of LLM deployments, where model

updates occur with varying frequencies ranging from regular fine-tuning adjustments to major architectural updates.

Model updates, fine-tuning operations, and parameter adjustments can render existing cached states incompatible, with

compatibility rates varying significantly depending on the extent of model modifications. Advanced systems implement

versioning mechanisms that allow gradual cache migration during model updates, typically completing migration

processes efficiently for large-scale cache systems, minimizing service disruption while maintaining performance

benefits.

Memory allocation strategies for prompt caching systems require careful optimization to handle the variable-length

nature of cached states, where individual cache entries exhibit significant size variations depending on prompt

complexity and context length. Traditional fixed-size allocation schemes prove inefficient for the heterogeneous memory

requirements of different prompt types, resulting in substantial memory waste due to internal fragmentation. Dynamic

allocation with predictive sizing based on prompt characteristics and historical usage patterns offers improved memory

utilization rates while maintaining consistent access performance with efficient retrieval times.

Computer Fraud and Security

ISSN (online): 1873-7056

85

 Vol: 2026 | Iss: 1 | 2026

Management

Component
Primary Challenge Technical Solution Impact

Implementation

Complexity

Cache

Invalidation

Logic

Probabilistic LLM

generation validity

across sampling

parameters

Advanced validation

checks with dependency

tracking mechanisms

Efficient validation

times for extensive

cache hierarchies

High - requires

sophisticated state

management

Hierarchical

Dependencies

Cascading invalidation

effects across

transformer layers

Graph-based

dependency structures

for processing

invalidation cascades

Maintains cache

integrity while

minimizing unnecessary

invalidations

Very High - complex

multi-layer

coordination

Memory

Footprint

Management

Extended conversations

consuming substantial

memory resources

Dynamic compression

techniques leveraging

transformer hidden

states

Substantial compression

ratios with minimal

decompression latency

Medium-High -

learned compression

methods

Temporal

Cache

Dynamics

Model updates rendering

cached states

incompatible

Versioning mechanisms

enabling gradual cache

migration

Efficient migration

processes with minimal

service disruption

High - requires

compatibility

detection systems

Memory

Allocation

Strategies

Variable-length cached

states with

heterogeneous

requirements

Dynamic allocation with

predictive sizing

algorithms

Improved memory

utilization with

consistent access

performance

Medium - predictive

algorithms based on

usage patterns

Table 2: Computational and Storage Optimization Techniques in Advanced Caching Systems [5, 6]

4. Distributed Model Serving Integration

The integration of advanced caching strategies into distributed model serving architectures requires careful consideration

of consistency, scalability, and fault tolerance requirements across multiple serving nodes. Unlike traditional distributed

caches that handle independent data objects, prompt caching systems must maintain coherent computational states across

multiple serving nodes while accommodating the stateful nature of LLM inference. Modern distributed LLM serving

clusters typically span numerous nodes, with each node managing substantial amounts of cached transformer states,

requiring sophisticated coordination mechanisms to maintain consistency across the distributed cache hierarchy [7].

Network latency between nodes in optimized data center environments directly impacts the effectiveness of distributed

cache coordination protocols and overall system performance.

Distributed cache coherence protocols for prompt caching must address the unique challenges posed by the hierarchical

and interdependent nature of cached transformer states. Traditional cache coherence mechanisms require significant

adaptation to handle the complex invalidation cascades that occur when cached prompt segments are updated or

invalidated across distributed nodes. Advanced implementations employ vector clock mechanisms and semantic

versioning to track state dependencies across distributed nodes, with coherence protocols capable of processing

substantial volumes of coherence messages across typical cluster configurations. The overhead of maintaining coherence

adds measurable latency to cache access times but ensures consistency across distributed transformer state hierarchies,

which is essential for maintaining inference accuracy.

Load balancing strategies in distributed LLM serving environments must account for cache locality to maximize the

effectiveness of prompt caching across serving nodes. Simple round-robin or least-connection strategies may result in

substantial cache miss rates, significantly negating the performance benefits of distributed caching systems. Intelligent

routing algorithms consider cache hit probability, current cache state distribution, and load characteristics to optimize

request placement across serving nodes, achieving improved cache hit rates while maintaining balanced load distribution

across cluster nodes [8]. These sophisticated routing decisions require additional processing time but substantially

improve overall system throughput and resource utilization efficiency.

The architecture of distributed prompt caching systems requires sophisticated replication strategies that balance

consistency requirements with performance objectives across geographically distributed deployments. Synchronous

replication ensures strong consistency but introduces latency overhead that may negate caching benefits, particularly for

latency-sensitive applications requiring rapid response times. Asynchronous replication strategies with eventual

Computer Fraud and Security

ISSN (online): 1873-7056

86

 Vol: 2026 | Iss: 1 | 2026

consistency models offer better performance characteristics with manageable replication delays, but require careful

handling of temporary inconsistencies affecting small percentages of cache operations during normal operation.

Network communication protocols for distributed prompt caching must efficiently handle the transfer of large cached

states between nodes, with individual state transfers varying significantly depending on prompt complexity and

transformer architecture. Standard protocols prove inadequate for the high-frequency, large-payload transfers required in

prompt caching scenarios. Advanced implementations employ specialized protocols with compression, delta encoding,

and streaming capabilities optimized for transformer state transfer, achieving improved throughput rates while reducing

network bandwidth requirements through intelligent compression techniques.

Fault tolerance mechanisms in distributed prompt caching systems must account for the potential loss of cached states

during node failures, which occur periodically in typical data center environments. Robust implementations employ

redundant storage strategies and state reconstruction mechanisms that ensure service continuity during failures,

maintaining high cache availability while enabling rapid recovery from node failures.

System

Component
Primary Challenge Technical Solution Performance Impact

Cache

Coherence

Protocols

Complex invalidation

cascades across hierarchical

and interdependent cached

transformer states

Vector clock mechanisms

and semantic versioning to

track state dependencies

across distributed nodes

Measurable latency overhead

to cache access times but

ensures consistency across

distributed transformer state

hierarchies

Load

Balancing

Strategies

Simple round-robin

strategies result in

substantial cache miss rates

negating distributed caching

benefits

Intelligent routing

algorithms considering

cache hit probability, state

distribution, and load

characteristics

Improved cache hit rates and

balanced load distribution with

additional processing time

requirements

Replication

Architecture

Balancing consistency

requirements with

performance objectives

across geographically

distributed deployments

Synchronous replication

for strong consistency

versus asynchronous

strategies with eventual

consistency models

Latency overhead versus

better performance

characteristics with

manageable replication delays

Network

Communicatio

n Protocols

Standard protocols

inadequate for high-

frequency, large-payload

transfers with varying state

complexity

Specialized protocols with

compression, delta

encoding, and streaming

capabilities optimized for

transformer states

Improved throughput rates

while reducing network

bandwidth requirements

through intelligent

compression

 Table 3: Advanced Caching Architecture Solutions for Multi-Node LLM Serving Environments [7, 8]

5. Performance Optimization and Cost Analysis

The quantitative assessment of performance improvements achieved through advanced caching strategies requires

comprehensive evaluation frameworks that consider multiple dimensions of LLM serving efficiency. Traditional metrics

like cache hit rates and response latency provide incomplete pictures of the complex performance characteristics

exhibited by prompt caching systems. Advanced evaluation approaches incorporate computational cost reduction,

memory efficiency improvements, and end-to-end user experience metrics, with comprehensive benchmarking revealing

substantial performance improvements across different workload categories [9]. Modern evaluation frameworks measure

numerous distinct performance indicators, including token generation throughput, memory bandwidth utilization, cache

coherence overhead, and request queuing delays, to provide holistic performance assessments that capture the

multifaceted nature of caching system optimization.

Computer Fraud and Security

ISSN (online): 1873-7056

87

 Vol: 2026 | Iss: 1 | 2026

Latency optimization through prompt caching demonstrates significant improvements across various LLM serving

scenarios, with time-to-first-token reductions showing substantial benefits for requests with cached prefixes in production

deployments. Empirical studies indicate that well-designed prompt caching systems can achieve considerable reductions

in initial response latency, with even greater improvements for subsequent tokens in cached sequences compared to cold

inference scenarios. These improvements compound exponentially in interactive scenarios where conversation context

can be extensively cached and reused, with multi-turn conversations showing cumulative latency reductions that increase

progressively after the initial exchange. Response time consistency improves dramatically, with the standard deviation of

response times decreasing substantially in optimized cached deployments compared to uncached systems.

Computational cost reduction represents one of the most significant benefits of advanced caching strategies, with

organizations reporting substantial reductions in total cost of ownership for LLM serving infrastructure. By avoiding

redundant computation for cached prompt segments, organizations can achieve considerable reductions in GPU

utilization during peak usage periods, with associated energy consumption decreases across typical enterprise workloads.

Economic analysis indicates that prompt caching can reduce serving costs significantly for workloads with substantial

prompt reuse patterns, making LLM deployment economically viable for broader application domains with notable cost

per inference reductions depending on cache hit rates and workload characteristics [10].

Memory efficiency optimization in prompt caching systems requires balancing cache size with hit rate performance, with

optimal configurations typically utilizing substantial portions of available system memory for cache storage. Analysis of

real-world deployment patterns reveals optimal cache sizes that vary significantly based on application characteristics,

user behavior patterns, and model architecture complexity. Dynamic cache sizing algorithms that adapt to changing

workload patterns demonstrate superior performance compared to static allocation strategies, achieving improved

memory utilization while maintaining consistent cache hit rates across diverse workload conditions.

The economic impact of advanced caching strategies extends beyond direct computational cost savings to include

improvements in service quality and user satisfaction metrics. Reduced latency and improved response consistency

contribute to enhanced user experience metrics that translate to measurable business value in commercial deployments,

with user satisfaction scores showing notable improvements in systems with optimized caching. Cost-benefit analysis

indicates that the infrastructure investment required for advanced caching systems typically achieves positive return on

investment within reasonable timeframes for moderate-scale deployments serving substantial daily request volumes.

Optimization Category Performance Characteristics Economic and Operational Impact

Latency Optimization

Time-to-first-token reductions with

substantial benefits for cached prefixes

and exponential improvements in multi-

turn conversations

Response time consistency

improvements with dramatically

reduced standard deviation in optimized

cached deployments

Computational Cost

Reduction

Considerable reductions in GPU

utilization during peak periods with

associated energy consumption

decreases across enterprise workloads

Substantial reductions in the total cost

of ownership make LLM deployment

economically viable for broader

application domains

Memory Efficiency

Optimization

Dynamic cache sizing algorithms

achieve improved memory utilization

while maintaining consistent cache hit

rates across diverse conditions

Optimal configurations utilizing

substantial portions of available system

memory with cache sizes varying based

on application characteristics

Economic Impact

Assessment

Enhanced user experience metrics

translate to measurable business value

with notable improvements in user

satisfaction scores

Infrastructure investment achieves a

positive return on investment within

reasonable timeframes for moderate-

scale deployments

Scalability and

Environmental Impact

Cache hit rates are improving in large-

scale systems with multi-tier

hierarchies, balancing effectiveness

with coordination overhead

Substantial carbon footprint reductions

supporting sustainable AI deployment

goals while maintaining service quality

standards

 Table 4: Quantitative Assessment of LLM Serving Efficiency Through Prompt Caching Strategies [9, 10]

Computer Fraud and Security

ISSN (online): 1873-7056

88

 Vol: 2026 | Iss: 1 | 2026

Conclusion

Advanced caching strategies for Large Language Model serving constitute a transformative advancement in addressing

the computational and economic barriers associated with large-scale model deployment. The article on prompt caching

techniques reveals substantial potential for enhancing inference efficiency while preserving the flexibility and accuracy

that make LLMs valuable for enterprise applications. The technical challenges encompassing cache invalidation logic,

memory management, and distributed serving integration demonstrate the complexity inherent in implementing effective

caching solutions for LLM workloads. However, the significant performance improvements and cost reductions achieved

by these strategies justify the implementation complexity and establish a foundation for more sustainable LLM

deployment practices. The integration of sophisticated state management mechanisms, dynamic compression techniques,

and intelligent routing algorithms creates a comprehensive framework for optimizing transformer-based inference

systems. Future developments in this domain should emphasize advancing semantic understanding capabilities for cache

management, exploring opportunities for cross-model cache sharing, and investigating integration possibilities with

emerging LLM architectures. The continued evolution of these techniques will serve a crucial role in democratizing

access to advanced language models and facilitating their broader adoption across diverse application domains,

ultimately contributing to the sustainable and economically viable deployment of computationally intensive AI systems.

References

1. Tom B. Brown, et al., "Language Models are Few-Shot Learners," arXiv, 2020. Available:

https://arxiv.org/abs/2005.14165

2. Samyam Rajbhandari, et al., "ZeRO: Memory Optimizations Toward Training Trillion Parameter Models," arXiv,

2020. Available: https://arxiv.org/abs/1910.02054

3. Noam Shazeer, "Fast Transformer Decoding: One Write-Head is All You Need," arXiv, 2019. Available:

https://arxiv.org/abs/1911.02150

4. Reiner Pope et al., "Efficiently Scaling Transformer Inference," arXiv, 2022. Available:

https://arxiv.org/abs/2211.05102

5. Ankit Gupta, et al., "Memory-efficient Transformers via Top-Attention," arXiv, 2021. Available:

https://arxiv.org/abs/2106.06899

6. Jordan Hoffmann, et al., "Training Compute-Optimal Large Language Models," arXiv, 2022. Available:

https://arxiv.org/abs/2203.15556

7. Deepak Narayanan, et al., "Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM,"

arXiv, 2021. Available: https://arxiv.org/abs/2104.04473

8. Aakanksha Chowdhery, et al., "PaLM: Scaling Language Modeling with Pathways," arXiv, 2022. Available:

https://arxiv.org/abs/2204.02311

9. Haoli Bai, et al., "Towards Efficient Post-training Quantization of Pre-trained Language Models," arXiv, 2021.

Available: https://arxiv.org/abs/2109.15082

10. Zhuo Li, "Model Compression for Deep Neural Networks: A Survey," Computers, 2023. Available:

https://www.mdpi.com/2073-431X/12/3/60

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2211.05102
https://arxiv.org/abs/2106.06899
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2109.15082
https://www.mdpi.com/2073-431X/12/3/60

