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Abstract:  

Excessive fluctuations in travel time between stops and demand at bus stops during bus operations can lead 

to operational instability in bus systems, such as bus bunching. To tackle this issue, this paper presents a 

dynamic bus holding control strategy leveraging multi-agent reinforcement learning to stabilize bus system 

operations and prevent bus bunching. First, bus motion system is constructed, and the rules for bus operation 

and passenger behavior are defined. Then, agent-based transit operation management is established, the 

elements of the multi-agent reinforcement learning framework are outlined, and a centralized training and 

decentralized execution method is proposed. Additionally, an event-driven simulation environment is 

developed for training and testing the agents. Finally, extensive numerical simulations are conducted to 

evaluate the proposed method against baseline approaches using various performance metrics. The results 

demonstrate that the proposed method effectively captures the dynamics of the bus system and accounts for 

the long-term impacts of current decisions, resulting in the most balanced bus trajectories, optimal passenger 

load distribution, and minimal total holding time. 

Keywords: bus bunching, bus holding, multi-agent reinforcement learning, hysteretic Q-learning

INTRODUCTION 

As a vital component of urban public transportation, bus systems offer significant convenience for residents’ 

daily travel while serving as effective tools for energy conservation, emission reduction, traffic congestion 

alleviation, and air quality improvement. However, compared to rail-based transportation systems like subways 

that operate underground, bus systems are more vulnerable to surface-level environmental factors such as road 

congestion, adverse weather, and unforeseen incidents. These challenges contribute to operational instability, 

leading to issues like bus bunching. Unstable bus operations not only increase passengers’ waiting times, 

diminishing the appeal of public transportation, but also escalate operating costs for bus service providers. To 

address these issues, implementing effective control strategies in bus systems is essential to optimize operations 

and enhance their attractiveness as a sustainable and green travel option. Significant research efforts have been 

devoted to developing flexible, real-time control strategies, including holding strategies, stop-skipping 

approaches [1-5], short-turning [6-9], speed adjustments [10-12], boarding limits to manage dwell times [13,14], 

traffic signal priority [15,16], and bus substitution methods [17,18]. However, some of these strategies face 

practical challenges that limit their widespread adoption and application. For example, stop skipping increases 

waiting times for passengers intending to board or alight at skipped stations, whereas short-turning forces 

passengers to disembark and wait for the next bus. Speed adjustments can be ineffective when the required 

speeds exceed safety limits, and traffic signal priority strategies often negatively impact general traffic flow. 

Despite the rapid development of new solutions, bus holding has emerged as the most widely studied control 

strategy in recent years. This approach involves holding buses at specific stops for a designated period, which 

not only reduces passenger frustration but also enhances the maneuverability of transit operations [19]. 

Bus holding control strategies have been extensively studied and are generally classified into two categories: 

static control, which is relies on a fixed headway or schedule, and dynamic control, which functions without a 

predefined headway or schedule. The static approach is typically used in transit services with low passenger 

demand and longer headways to align operations with planned schedules. In contrast, dynamic control is more 

commonly applied to high-frequency bus or transit lines. This paper primarily reviews the literature related to 

the dynamic control approach. Early research primarily focused on the establishment and verification of bus 

holding control models aimed at simple transit systems [20-22]. Multi-source public transportation big data, 

derived from bus IC cards, GPS/Beidou positioning systems, smartphone apps, web platforms, sensors, and 
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video detection, possesses high levels of continuity, completeness, and timeliness. They has facilitated the 

incorporation of real-time transit system data into academic research by numerous scholars. An earlier study on 

real-time strategies for the holding problem was conducted by Eberlein et al., who formulated the issue as a 

quadratic programming problem and proposed an iterative heuristic to identify the optimal set of headways [19]. 

An adaptive control scheme to mitigate the bus bunching problem was analyzed by Daganzo, who proposed a 

control strategy utilizing dynamic holding times informed by real-time headway data. [23]. A model was 

employed that utilized multiple control points to maintain headways as close as possible to the desired values, 

thereby minimizing the need for significant adjustments. However, because the buses in this study were 

designed to respond only to disturbances occurring ahead and not those behind, the model was found to be 

ineffective in scenarios involving substantial disruptions. A model that adjusts the bus cruising speed in 

real-time based on the forward and backward headways to alleviate the large disturbance problem was proposed 

by Daganzo and Pilachowski [11]. Building on Daganzo's (2009) work, Xuan et al. proposed a family of 

dynamic holding strategies incorporating a virtual schedule into the model, offering the advantage of 

applicability to high and low frequency transit lines. [24]. The above study was supplemented from forward 

headway control which the every consecutive buses are dynamically self-equalizing [25]. Matthias Andres 

extended current bus holding control frameworks to include prediction data [26]. The majority of methods 

proposed in previous research predominantly rely on centralized schemes. In these approaches, the actions of all 

buses are determined by a single central unit using the available information. This setup allows the system to 

coordinate and optimize the actions of multiple buses simultaneously, facilitating their synchronization. 

However, this approach requires potentially heavy computational resources to solve a centralized optimization 

problem, which can limit the number of buses that can be managed effectively. Additionally, Public transit 

systems are particularly susceptible to external factors such as road congestion, weather conditions, and 

unexpected incidents, resulting in significant instability of passenger demand and travel time, which makes the 

optimization of bus holding problems using real-time information progressively more complex and challenging. 

Moreover, real-time data, such as bus position, speed, dwell time, and passenger demand—is often influenced 

by external factors like weather, the terrain of the transit route, or the performance of the equipment itself. In 

this context, conventional computing models exhibit significant limitations, including poor scalability, low fault 

tolerance, and vulnerability to single points of failure when alternative system components are unavailable. 

Furthermore, maintaining robust transmission links to monitor all buses in real time is not only costly but also 

difficult, adding to the challenges of achieving a reliable system. 

With recent advances in artificial intelligence, particular in deep reinforcement learning, have provided 

new insights into addressing complex real-time control problems. By integrating the power of deep learning 

and reinforcement learning, these advancements have shown great potential for solving various transportation 

operation challenges [27]. Clearly, it extends single-agent systems to multi-agent frameworks, enabling 

decentralized decision-making and learning, which makes them highly applicable for addressing complex 

real-time problems with real-life data. [28]. Chen et al. proposed bus holding model based on MARL [29, 

30]. Wang Jiawei systematically studied bus fleet control with MARL framework [31–34]. However, there 

are still some limitations to be addressed. First, in the model, the backward headway data must be predicted 

before it can be utilized, which affects the accuracy of the control method. Second, the coordination between 

long-term and short-term profit objectives has not been adequately resolved. In recent years, there has been a 

surge in research on multi-agent reinforcement learning. New algorithms and coordination mechanisms have 

shown promise in addressing these challenges. This paper proposes a MARL framework for designing a 

dynamic bus holding control system that leverages a virtual schedule to account for both immediate and 

long-term rewards. The primary contributions of this study are outlined as follows: 

⚫ A MARL framework is presented to implement dynamic bus holding control strategies, featuring 

carefully designed elements such as states, action sets, reward functions, a multi-agent system, the physical and 

operational constraints governing bus motion, coordination mechanism. 

⚫ The virtue schedule is introduced into model as implicit coordination mechanism among agents, and 

also the hysteretic Q-learning algorithm is designed to train by joint agent efficiently and execute by each 

independent learner. 
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⚫ To demonstrate the advantage of the proposed MARL framework, transit simulator is developed for 

the comparative experiment. 

PRELIMINARIES 

Agent-based Transit Operation Management System 

The system modeled in this study represents a one-way loop route consisting M homogenous buses and K stops 

(see Figure 1). The buses depart from the starting stop (referred to as Stop 1) at fixed headways of H, and 

proceed sequentially through all downstream stop (2,3, , )K . It is stipulated that all passengers on board 

must alight at stop k+1, after which a new bus service trip will commence from Stop 1. All operating buses run 

sequentially in the order of 1 to n, with overtaking strictly prohibited. The variables and parameters used in the 

model are detailed in Table 1. 

Table 1. Notation 

Notation Meaning 

i  Bus index, (1, 2, )i M=  

k  Stop index, (1, 2, )k K=  

,i kt
 

Scheduled arrival time bus i at stop k 

,i kta  Actual arrival time of bus i at stop k  

,i kth
 

Actual holding time of bus i at stop k 

,i ktd  Actual departure time of bus i from stop k  

, 1i kL −  
Number of onboard passengers for bus i upon departing from stop k−1. 

kd
 

Amount of slack time in the virtual schedule at stop k 

,i kA
 

Number of passengers alighting from bus i  at stop k  

,i kB
 

Number of passengers boarding bus i at stop k  

0 0, 
 

Parameter defining the cost of passengers alighting and boarding 

k  
Passenger arrival rate at stop k  

,i kw
 

Passenger waiting time of bus i for boarding and alight at stop k , , 0 , 0 ,max( , )i k i k i kw A B =    

H
 

Scheduled headway to meet the transit system's demand during a specific period 

,i kh
 

Actual headway of bus i and bus i-1 when bus i arrives at stop k 

kc
 

Average travel time between stop k-1 and stop k 

, 1i k +  Stochastic variability in the travel time of bus i between stop k and stop k+1 

 

The common control architectures of agent-based systems are generally classified into three types: hierarchical, 

heterarchical, and hybrid [35]. The hierarchical approach divides the overall system into smaller subsystems 

with minimal interaction between them. In contrast, the heterarchical approach adopts a fully decentralized 

structure. The hybrid method integrates the advantages of both. This study employs a partial dynamic 

hierarchical control architecture, where multiple agents are dynamically organized based on task decomposition. 

To facilitate this dynamic organization, heterogeneous agents are grouped into virtual clusters as needed. The 

proposed agent-based transit operation management system is structured into three layers, as shown in Figure 2: 

(1) Lowest Layer: Contains data agents and user interface agents. (2) Middle Layer: Comprises bus agents. (3) 

Highest Layer: Hosts agents operating within the transit control center server, including the coordination agent, 

reinforcement learning agent, and agent management system. The system employs six distinct types of agents, 

which work collaboratively to manage operations effectively. 
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Figure 1. Representation of transit system 

⚫ Bus agent 

Agents: one agent for each bus operated on the single fixed transit route. 

Roles: sensing state variables from the transit operation environment; making autonomous decisions according 

to the base; using actions that affect the environment to control the bus  

Interactions: communicating and cooperating with other bus agents, coordination agent, reinforcement learning 

agent, user interface agent, and data agent. 

⚫ Agent management system 

Agents: single agent. 

Roles: Overseeing the life cycle of agents within the system, including their creation, registration, retirement, 

migration, and maintenance. 

⚫ Coordination agent 

Agents: single agent serving in the transit control centre server. 

Roles: coordinating the bus agents’ control actions. 

Interaction: cooperating with bus agents whose events are triggered at the same time.  

⚫ Reinforcement learning agent 

Agents: single agent for serving in the transit control centre server.  

Roles: providing reinforcement learning algorithm for the bus agents. 

Interaction: communicating with bus agents. 

⚫ User interface agent 

Agents: one agent for interacting with users. 

Roles: showing information to the users, such as decision makers and drivers; participating in interaction. 

Interaction: communicating with the environment and users.  

⚫ Data agent 

Agents: one agent for each device. 

Roles: collecting the bus and stop state information. 

Interaction: communicating with bus agents. 
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Figure 2. Architecture of the agent-based transit operation management system 

Bus Motion 

The bus motion system is characterized by the sequence of bus arrival times at successive control points. These 

arrival times are interconnected through the following equation, which accounts for the slack: 

, 1 ,i k i k k k kt t H d r+ = + + +                              (1) 

, 1,i k i kt t H−− =                                   (2) 

From the above equation, it can be seen that the virtue schedule is constructed by the assumed dwell time and 

the slack time, which is suitable for both high-frequency short and low-frequency long headway. The actual 

arrival times obey: 

, 1 , , , , 1i k i k i k i k k i kta ta w th c + += + + + +                        (3) 

After the bus arrives at a stop, since most buses in cities have two doors for passengers to board and alight, the 

process of passengers alighting and the process of passengers boarding occur simultaneously. The dwell time of 

the bus is determined by the maximum of the time required for passengers to alight and the time required for 

passengers to board, as follows: 

, 0 , 0 ,max( , )i k i k i kw A B =                              (4) 

When bus i departs from the starting stop k-1 and travels to a downstream stop k to serve passengers, its arrival 

time at the stop is given by: 

, , 1i k i k kta td r−= +                                 (5) 

After bus i arrives at stop k, it will dwell a certain period to complete passenger boarding and alighting. Then, 

based on the agent's decision, the bus remains at the station for a specified duration before departing. The 

departure time is the sum of the dwell time and the bus holding time, as follows: 

, , , ,i k i k i k i ktd ta w th= + +                               (6) 

The real-time control model for the bus motion system must comply with both physical and operational 

constraints, which are outlined as follows: 

, , 1 , ,i k i k i k i kL L B A−= + −                                (7) 

, , 1,( )i k k i k i kB td td −=  −                             (8) 

, , 1i k i k kA L q−=                                   (9) 

, 1,i k i ktd ta +                                  (10) 
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, 0i kth                                       (11) 

, 0i ktd                                      (12) 

, 0i kta                                      (13) 

, 0i kL                                      (14) 

Constraint (7) establishes the relationship between the total numbers of onboard passengers and the number of 

passengers boarding and alighting. This balances the passenger flow and accounts for real-time updates. 

Constraints (8) and (9) outline the estimation methods for calculating the number of passengers alighting and 

boarding at a specific stop. Constraint (10) ensures that overtaking does not occur between consecutive buses. 

Constraints (11)–(14) ensure that all variables (such as passenger counts, times, and other parameters) are 

non-negative. This guarantees that the model operates within realistic and feasible conditions. These constraints 

collectively govern the bus transit system's operations, ensuring consistency, efficiency, and adherence to logical 

and practical requirements. 

METHODOLOGY 

Definition of Marl Elements 

System states 

The state of the transit system on a fixed route should reflect the time headway information on buses. The state 

of bus motion is thus defined as the degree of deviation between the planned arrival time in the virtue schedule 

and the actual arrival time at each stop. While bus arrive at control point k, the level of deviation from scheduled 

arrival time is given by 

, ,

,

( )
100%

i k i k

i k

ta t
VSAR

H

−
=                           (15) 

In order to meet the requirement that the state space is finite in MARL model, value of the level of deviations 

should be discretized. The binning technique is used to group the virtual schedule adherence ratio values into 

bins with equal-width. Let min and max denote corresponding state of the lower and upper bound value of the 

level of deviation. Let G be the number of bins, which are numbered, 1 through G. Also the bin width is given 

by 

max min

G


 −
 =                               (16) 

Then, the range of the gth bin is as shown in (17). 

min min( ( 2) , ( 1) ], 2gU g g g  = + −  + −                     (17) 

Action set 

Once a bus arrives at a station and completes passenger boarding and alighting, the bus holding time is 

determined based on the bus holding control strategy. The action set is defined such that the holding periods are 

represented as multiples of a fixed interval. Analytically, 

( ) , , 0i i h i hA t Z  +=    
                      （18）

 

This assumption simplifies both the mathematical formulation and the implementation of the solution algorithm. 

In the simulation experiments (Section 4), 20sh = and {0,1, 2,3}i  . When 0i = , it signifies the 

immediate departure of the bus once passengers have completed boarding and alighting. Discrete holding 

intervals are employed primarily for operational practicality, simplifying the process for bus drivers to follow 

instructions from central dispatcher. 

Reward function 

The objective of control is to reducing bus bunching, which is regulating headway and achieve a long-term goal 

of reducing variance of headway. For sake of immediate reward definition in the MARL model, construction of 

the utility state function is proposed by making use of the normal probability density function. Once the g(sj) 
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values are obtained, each state utility values is found from  

2 ( )

2
min

1
( ( )) , ( ) ( 1)

22

jg s

j jf g s e g s j





− 
= = + −  +                 (19) 

Where g(sj) is mid-point value of interval corresponding to pseudo state .The higher values of this function 

indicate the nearer distance from the optimal state. Conversely, the lower values indicate further distance from 

the optimal state. Therefore, the immediate reward function is to measure the changes in deviation distance from 

current state si,k to next state si,k+1 under bus holding action ai, which is shown in Equation (20) 

,* *

, , 1 1 , 1 , 22 2
( , , ) ( ( ( ) ( ( )) ( ( ) ( ( )) ) i kth

i i k i i k i k i kR s a s M f g s f g s f g s f g s M e+ += − − − −      (20) 

Where M1 and M2 are equilibrium normalization coefficients represented by a larger positive integer, *s is the 

optimal state, 
2

is Euclidean norm of each state. The details of the reward computation process are provided 

in Algorithm 1. 

Algorithm 1: Reward computing algorithm 

1 Input ,i kta , ,i kt , , 1i kta + ,  ,
min ,

1M ,
2M H ,S;  

2 Initialize: Coding with integral number according to the position of partition interval corresponding to pseudo 

state on the number axis. The coding integral number begin with / 2G−    ,a hash table to store the serial 

number of state j; 

3 Calculate by Equation (15), query serial number of state of ,i kVSAR ; 

4 Calculate mid-value min( ) ( 1)
2

jg s j





= + −  + ; 

5 Calculate utility state values of the utility state by Equation (19) 

6 Repeat step3-step5, compute utility state values VSARi,k of bus i at bus station 

k + 1; 

7 Calculate immediate reward value Ri(si,k,ai,si,k+1) by Equation (20) 

8 Return , , 1( , , )i i k i i kR s a s + . 

 

Coordination problem between agents 

Accord to the reward function, the virtue schedule including in system state is implicit coordination mechanism 

from the macroscopic view. Learning agent can be broadly categorized into two fundamental types: independent 

learners and joint-action learners. This study adopts centralized training by joint agent and decentralized 

execution by the independent learners [28]. This paradigm is well-suited for real-world transit operations, as it 

allows extensive offline data to be utilized during the train phase, while significantly reducing execution time. 

During execution, each agent independently choose an action that maximize its local Q-function. Consequently, 

the general update equation for agent i is: 

( , ) (1 ) ( max ( , ))
i

i i i i
u A

Q s a Q r Q s u 


= − + +                             (21) 

However, the association of all agents’ individual actions fails to achieve Pareto optimality, posing the first 

challenge for the independent learner to overcome. In this paper, the coordination issue exists only if two or 

more buses are at stops during the same period. The basic idea of coordination between agents is to define a 

joint action for the agents, as πu(s) = (π1(s), · · · πm(s)), m=|P|. After they execute a joint action, the reward of 

each bus agent is the same as the joint reward. This is formulated as the equation: 

1( , ) ( , ) ( , ), , , ( , , , ),u i i j j u i j mr s a r s a r s a i j P a a a a a m P= =   = =           (22) 

Solution Based on MARL 

Markov games serve as the foundation for a significant portion of MARL research, so the following definitions 

of key elements of MARL including the state, action, and reward function are given combined with the holding 

control model. Readers can refer to Busoniu et al. [36], Zepeng, Ning [28], Hu et al.(2024) for an excellent 

overview of various algorithms for multi-agent reinforcement learning. These include decentralized Q-learning, 

distributed Q-learning, hysteretic Q-learning, recursive Frequency Maximum Q-Value (FMQ), and Win or Learn 
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Fast Policy Hill Climbing (WoLF PHC) [37]. The hysteretic Q-learning framework is applied to seek a 

satisfactory solution.  

The primary distinction between the hysteretic Q-learning algorithm, the distributed Q-learning algorithm, and 

the decentralized Q-learning algorithm lies in their update equations, as shown below: 

1

1

max ( , ) ( , )

( , ) 0
( , )

( , )

i i i
a

i i

i i

i i

r Q s a Q s a

Q s a if
Q s a

Q s a else

 

  

 


  + −

+ 
 

+

                     (23) 

Where 1 and 1 represent the rates of increase and decrease of Q-values, respectively. The hysteretic Q-learning 

algorithm functions in a decentralized manner, where each independent learner maintains its own Q-table. The 

size of the Q-table is independent of the total number of agents and scales linearly with the learner's individual 

action set. The hysteretic Q-learning algorithm applied to the holding problem is outlined as follows: 

Algorithm 2: The hysteretic Q-learning algorithm for the holding problem 

1Initialization: the number of states and actions, learning rates 1 and 1 , discount rate , ( , )i iQ s a ; 

2 Iteration: at iteration p for agent i, to observe the state
is ,choose an action ai according 

to ˆ( ) arg max ( , )
i

i i i
a

s Q s a =  If more than two agents are at stops during this iteration, go to step 7; 

3 Perform action and observe reward r along with subsequent state
is ; 

4 Update the Q-value using Equation(23); 

5 Transit to a new state i is s= ; 

6 1p p= + ,and repeat Step 1 until the value function ( , )i iQ s a converges;  

7 Take action ua , and observe rewards ( , )ur s a , ( , )i ir s a , ( , )i jr s a  and the subsequent state is  , js  ;modify the 

reward of agent , ,i j according to Equation(22) and go to Step 4. 

 
SIMULATION EXPERIMENTS 

Experiment Description 

The simulation experiments were conducted using Matlab to build the simulation environment and train the 

algorithm. An overview of the simulation process is provided in Figure 3.Offline independent learning within 

the cooperative multi-agent system was executed at the start of transit operation control simulation. The MARL 

algorithm required approximately 30 minutes to converge in Matlab, running on a 1.6 GHz Intel Core i5-8250U 

CPU. This setup involved 10500 states and four actions. The proposed model is applied to a 4km transit corridor 

with ten evenly spaced bus stops at 0.4km intervals. The bus fleet comprised of six buses, each with a passenger 

capacity of 72. It was assumed that all buses operated at a constant speed of 25km/h, with fixed travel times 

between adjacent stops. The parameters for boarding and alighting were set to be 

1

0 3s pax −= and
1

0 5s pax −= , respectively. The planned headway was set to, and passenger arrivals 

followed a Poisson process, with average arrival rates at each stop illustrated in Figure 4. The parameters for the 

hysteretic Q-learning algorithm were set as follows: the discount factor 0.9 = , while the learning rates 

1 0.3 = and 1 0.03 = . The total simulation duration was two hours, including a 15 minutes warm-up time 

at the beginning. 
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Figure 3. Schematic representation of the MARL approach for solving the holding problem 
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Figure 4. Average passenger arrival rates at stops 

The following strategies are tested and compared: 

1. No-control strategy: in this case, the holding action are not applied whatever.  

2. Threshold control: in this holding control model, the 0H  represents the target headway. The holding action 

is initiated if the headway to the preceding bus falls below the threshold headway ( 0H ), whereas the bus is 

dispatched immediately otherwise. The holding control strength parameter   ranges from 0.0 to 1.0. 

3. This holding control is implemented using fuzzy rules, as defined by the fuzzy knowledge framework 

proposed by Milla et al. [38] 

4. Proposed control strategy in this paper: holding control based on MARL. 

Simulation Analysis and Results 

Twenty replications were run for each bus holding control model discussed in the previous sections. Table 2 

presents mean and standard deviation of passenger waiting Time, in-vehicle ride time and total travel time per 
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passenger across four scenarios. The in-vehicle ride times were similar across all four scenarios. The waiting 

time at stops and total travel time, when using only the threshold control strategy, were reduced by 26.55% and 

6.81% respectively, and compared to the no control strategy. These results are comparable to the bus holding 

control strategy based on fuzzy rules, which resulted in a 35.99% reduction in waiting times at stops and a 

14.73% reduction in total travel time. The slight improvement in performance observed with the fuzzy rule 

based strategy applies holding actions at four specific stop (stops 2, 3, 8, and 9), whereas the proposed strategy 

allow holding actions at all stops. From the Table 1, it is clear that the reduction in total time is primarily due to 

the savings in waiting time at stops, while in-vehicle ride time remains largely unchanged, as we assume that 

constant travel time between stops. 

Table 2. Mean and standard deviation of passenger waiting time 

 Waiting Time (min) 
In-vehicle ride 

time(min) 
Total time (min) 

 Mean Std. 
Variation to no control 

strategy: B (%) 
Mean Mean 

Variation to no control 

strategy:C (%) 

1 3.39 1.29 - 4.69 8.08 - 

2 2.49 0.58 26.55% 5.04 7.53 6.81% 

3 2.17 0.48 35.99% 4.72 6.89 14.73% 

4 2.19 0.56 35.4% 4.74 6.93 14.23% 

Notes: % variation=
( )

%
case no control

no control

−
  

Figure 5 illustrates the bus trajectories for four different control strategies. As shown in Figure 5a, the no-control 

strategy results in uneven headways, causing buses to bunch together early on, which leads to long periods 

where no buses pass a given stop. In Figure 5b, the threshold control strategy reduces some of the bunching, 

allowing buses to maintain more consistent headways. However, long holding times in this strategy can cause 

delays to propagate to subsequent buses, affecting their headways. In Figure 5c, the application of holding 

control based on fuzzy rules significantly reduces bunching, but coordinating the objectives of all buses proves 

challenging.  

Finally, the trajectories shown in Figure 5d for the proposed strategy exhibit more consistent headways between 

buses compared to other control strategies. This improvement is largely attributed to the reward function, which 

is specifically designed to regularize bus headways, along with the coordination mechanism among bus agents. 

Figure 6 illustrates the passenger load on each bus as it travels from departure at stop 1 to arrival at stop 10 

across the four different holding control strategies. In the Figure 6a, Under the no-control strategy, significant 

variability in bus loads is observed at each stop due to bus bunching. Some buses reach full capacity, while 

others carry considerably fewer passengers. In Figure 6b, the bus loads improve compared to the no-control 

scenario. Figure 6c and Figure 6d show that the proposed holding control strategy results in less variability and a 

more uniform distribution of passengers across buses. These findings indicate that the proposed strategy 

enhances passenger comfort relative to the other control strategies, enabling buses to operate with reduced 

crowding and offering a more reliable transit service. 

As shown in Figure 7, the frequency of no-holding actions for the six buses is approximately 50%, while the 

frequencies for the other three holding actions are 24.44%, 13.78%, and 12.89%, respectively. In terms of total 

holding time, it was reduced by 21.2% and 14.9%, respectively, compared to the other two control strategies 

(Threshold and Fuzzy rules). Table 3 demonstrates that the proposed control strategy effectively reduces the 

variance in headways and average waiting times. Although holding actions increase the travel time for 

passengers onboard, the benefits in terms of improved service efficiency make this trade-off worthwhile. 
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Figure 5. Bus trajectories for the different four strategies 
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Figure 6. Passenger Loads at various stops under four control strategies 
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Figure 7. Frequency of use of each bus’s holding control actions 

CONCLUSIONS 

This paper proposes a dynamic control method based on multi-agent reinforcement learning to implement 

real-time bus holding control, prevent bus bunching, and ensure the stability of the bus system. By carefully 

designing key elements of multi-agent reinforcement learning, such as the system state, action set, reward 

function, multi-agent system structure, and the physical and operation constraints of bus motion. Each bus agent 

can effectively implement dynamic bus holding strategies to maintain regular headway. To facilitate 

coordination among all bus agents, the state is defined using a virtue schedule that ensures regular headway. A 

centralized training approach with decentralized execution is introduced, with virtue schedule playing a crucial 

role in coordinating bus agents from a macro perspective. To demonstrate the advantage of the proposed 

multi-agent reinforcement learning framework, the transit simulator is developed for comparative experiments. 

Meanwhile, the computing time of the hysteretic Q-learning algorithm is suitable for online implementation and 

real-time decision-making. Simulation results comparing the proposed method with baseline methods reveal the 

following findings: (1) Compared to the baseline method, the proposed method effective captures the dynamics 

of the bus system and the long-term effects of current decisions, leading to the most balanced bus trajectories, 

optimal passenger load distribution, and minimal total holding time; (2) The proposed control strategy 

outperforms others, with a 35.4 % reduction in waiting time at stops and a 14.23% reduction in total travel time; 

(3) In terms of total holding time, the proposed method reduces it by 21.2% and 14.9%, respectively, compared 

to the threshold and fuzzy rules strategies. 

For future work, we plan to extend this framework to account for the uncertainties in the bus operation, such as 

the restricted bus load capacity, traffic signals at intersections. Additionally, in practice scenarios, not all state 

attribute variables may be fully available due to unexpected events like communication interruptions or data loss. 

Future efforts will focus on developing models to handle such situations. The integration of mixed control 

strategies, including skip-stop, deadheading, changes in speed, and leapfrogging operations with the bus ahead 

should also be explored. Therefore, future research work could make use of real-world traffic data from transit 

agencies to develop stable and intelligent bus operation and management system. 
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