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Abstract

Modern distributed data pipelines increasingly rely on complex combinations of storage systems, message
queues, compute frameworks, and networked services to process large volumes of data. Within these
pipelines, Input/Output bottlenecks remain a persistent and difficult challenge, often manifesting as reduced
throughput, increased latency, and unpredictable performance behavior. Existing observability approaches
typically monitor Input/Output activity using isolated metrics such as disk utilization, network throughput,
or queue depth. While these metrics provide partial visibility, they are often insufficient to accurately localize
bottlenecks in distributed environments where performance degradation arises from interactions across
multiple layers of the system. As a result, operators frequently face delayed diagnosis, misattribution of root
causes, and inefficient mitigation strategies. Current monitoring systems predominantly rely on single-modal
observability data, focusing on either metrics, logs, or traces in isolation. This fragmented visibility limits
the ability to correlate low-level Input/Output events with higher-level pipeline behavior, especially under
dynamic workloads and variable access patterns. These limitations become more pronounced as pipelines
scale across heterogeneous infrastructure, where Input/Output contention may shift between storage,
network, and application layers over time. This paper proposes a Multimodal Observability framework for
Input/Output bottleneck detection in distributed pipelines. The framework is designed to integrate metrics,
logs, and traces into a unified observability model, enabling cross-layer correlation of Input/Output behavior.
By aligning low-level Input/Output signals with execution paths and system events, the proposed approach
aims to improve the precision of bottleneck identification without relying on isolated indicators. The
framework focuses on systematically capturing and correlating Input/Output interactions across pipeline
stages to distinguish true bottlenecks from secondary performance symptoms. Through this approach, the
paper seeks to address the limitations of existing observability practices and establish a structured
methodology for detecting and analyzing Input/Output bottlenecks in complex distributed data pipelines.
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INTRODUCTION

Distributed data processing pipelines have become a fundamental component of modern computing systems,
supporting large-scale analytics, real-time streaming [1], machine learning workflows, and cloud-native applications.
These pipelines typically span multiple layers of infrastructure, including compute nodes, storage systems, messaging
frameworks, and network services. As data volumes and processing complexity increase, ensuring consistent
performance across such distributed environments has become increasingly challenging. These bottlenecks may appear
intermittently, shift across pipeline stages, or cascade into secondary performance issues, making accurate diagnosis
non-trivial in distributed settings. Existing observability [2] solutions primarily rely on isolated monitoring signals,
such as infrastructure-level metrics, application logs, or distributed traces. While each of these observability modalities
provides valuable insights, they are often analyzed independently, limiting the ability to correlate low-level
Input/Output events with higher-level pipeline [3] behavior. As a result, operators and system engineers may struggle
to determine whether observed performance degradation originates from storage, network, application logic, or their
combined interaction. Furthermore, threshold-based monitoring approaches commonly used in practice are insufficient
for capturing transient or context-dependent bottlenecks that arise only under specific workload conditions. The
growing scale and heterogeneity of distributed pipelines further exacerbate these challenges. As pipelines expand across
clusters with varying node counts, workloads [4], and data access patterns, Input/Output behavior becomes increasingly
dynamic and difficult to predict. This highlights the need for observability approaches that go beyond single-source
monitoring and enable cross-layer correlation of Input/Output activity. This work is motivated by the limitations of
existing observability practices in identifying and analyzing Input/Output bottlenecks in distributed pipelines. The
paper focuses on the design of a Multimodal Observability framework that integrates metrics, logs, and traces to provide
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a unified view of Input/Output behavior.
LITERATURE REVIEW
1. Distributed Data Pipelines and Performance Challenges

Distributed data pipelines serve as the foundation for large scale data processing systems, supporting analytics, streaming
applications, and machine learning workflows [5]. Prior studies emphasize that as pipelines expand across multiple nodes
and services, performance behavior becomes increasingly complex and difficult to predict. Rather than being dominated
by isolated component inefficiencies, performance degradation often emerges from interactions between compute,
storage, and network layers. Input output related delays frequently propagate across pipeline stages, amplifying their
impact on overall throughput and latency. The literature consistently notes that traditional debugging approaches struggle
to cope with this complexity, particularly in environments where workloads and access patterns vary dynamically across
time. Research on distributed systems repeatedly identifies input output bottlenecks as a major limiting factor [6] in
scalable performance. These bottlenecks arise from contention over shared resources such as storage devices, network
links, and buffering mechanisms. Unlike compute bottlenecks, which can often be mitigated through parallel execution,
input output bottlenecks are constrained by physical and architectural limits. Studies show that localized congestion can
trigger cascading slowdowns across pipeline components, leading to uneven resource utilization. The literature
highlights that such bottlenecks are often difficult to detect using coarse grained monitoring, as aggregate metrics may
obscure transient or component specific issues.

2. Traditional Monitoring Approaches

Traditional monitoring solutions rely primarily on infrastructure level metrics such as disk utilization, throughput [7],
and latency to assess system health. While these metrics provide useful summaries of resource usage, prior work
demonstrates that they lack sufficient context to diagnose complex performance problems. Static threshold [8] based
alerts are particularly limited in distributed environments, where normal operating ranges vary across workloads and
system states. Researchers argue that metrics alone fail to capture causal relationships between system components,
making it difficult to determine whether observed input output anomalies are root causes or secondary effects of upstream
delays. Log based observability has been widely used to capture application level behavior and execution events [9]. The
literature emphasizes that logs provide valuable semantic information about system activity, including error conditions
and state transitions. However, studies also point out that logs are often unstructured and voluminous, making automated
analysis challenging at scale. Correlating log entries across distributed components typically requires manual effort and
domain expertise. While logs can reveal symptoms associated with input output bottlenecks, such as timeouts or delayed
operations, they rarely offer direct insight into the underlying resource contention driving these issues.

3. Distributed Tracing and Execution Visibility

Distributed tracing has gained prominence as a means of achieving end to end visibility [10] across service boundaries.
Research describes tracing as an effective tool for identifying latency accumulation along execution paths. By capturing
timing relationships between pipeline stages, tracing enables the localization of slow components. However, the
literature also acknowledges that tracing alone does not explicitly expose low level input output [11] behavior. Traces
indicate where delays occur but often cannot explain whether delays originate from storage access, network congestion,
or internal buffering. Recent research increasingly advocates for multimodal observability as a comprehensive approach
to system monitoring. Multimodal observability integrates metrics, logs, and traces into a unified analytical view,
enabling richer correlation across system layers. Studies argue that combining quantitative measurements with contextual
and causal information enhances diagnostic accuracy. The literature highlights that multimodal approaches are
particularly effective for diagnosing performance issues that span multiple subsystems [12]. Input output bottlenecks are
frequently cited as a class of problems that benefit from such integration due to their cross layer nature.

4. Correlation and Causality in Performance Analysis

A significant body of work focuses on correlation techniques for analyzing performance behavior in distributed systems.
Researchers emphasize that identifying bottlenecks [13][21] requires aligning observability signals across time and
components to infer causal relationships. Prior studies explore methods for correlating metrics with execution events and
trace spans to distinguish primary bottlenecks from secondary symptoms. The literature stresses that without effective
correlation, observability systems may misattribute performance degradation, leading to ineffective optimization efforts.
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Scalability is a central concern in observability research, particularly for large distributed pipelines. Studies note that as
system scale increases, the volume of observability data grows substantially [ 14], introducing overhead in data collection,
storage, and analysis. Input output contention within observability pipelines themselves has been reported as a limiting
factor. Researchers propose selective instrumentation and adaptive sampling to manage overhead, while acknowledging
the tradeoff between visibility and scalability.

5. Dynamic Workloads and Bottleneck Evolution

Distributed pipelines often operate under dynamic workloads with fluctuating data volumes and access patterns [ 15][22].
The literature highlights that input output bottlenecks may shift across components as workloads evolve. Static
monitoring configurations are frequently inadequate for capturing such behavior. Adaptive observability approaches
have been proposed to respond to changing conditions, reinforcing the importance of continuous multimodal correlation.
Despite advances in observability tooling, existing approaches exhibit notable limitations. Many solutions focus on
specific platforms or system layers, resulting in fragmented visibility. Input output bottleneck detection is often treated
as a secondary concern rather than a primary design objective. The literature notes a lack of standardized frameworks
for systematic integration of observability modalities. The reviewed literature collectively underscores the need for
structured observability approaches that address the complexity of input output bottlenecks in distributed pipelines.
Integrating metrics, logs, and traces offers the potential to bridge the gap between low level resource monitoring and
high level execution analysis [16]. This motivates the exploration of multimodal observability frameworks specifically
designed for accurate input output bottleneck detection.

6. Observability in Cloud Native Environments

Cloud native environments introduce additional complexity to distributed pipelines due to dynamic resource allocation,
container orchestration, and elastic scaling. The literature highlights that observability in such environments must
account for frequent changes in topology and execution context. Input output behavior can vary significantly as
workloads migrate across nodes or as containers are rescheduled. Traditional monitoring [17] approaches often struggle
to maintain continuity of visibility under these conditions. Research emphasizes that effective observability in cloud
native systems requires continuous correlation of signals across infrastructure and application layers to accurately track
input output behavior as the system evolves.

7. Input Output Behavior Across Pipeline Stages

Prior studies observe that input output bottlenecks rarely affect a single pipeline stage in isolation. Instead, delays
introduced at one stage often propagate downstream, leading to compounded performance degradation. The literature
discusses how buffering, backpressure, and synchronization mechanisms influence the flow of data between stages.
Understanding input output behavior across the entire pipeline is therefore critical for accurate bottleneck [18][23]
detection. Researchers argue that observability approaches must capture stage level interactions to differentiate between
localized slowdowns and systemic input output constraints. Identifying the root cause of input output bottlenecks remains
a persistent challenge in distributed systems research. The literature notes that symptoms such as increased latency or
reduced throughput often mask the underlying cause of performance issues. Input output bottlenecks may originate from
subtle interactions between storage access patterns, network contention, and application logic. Without integrated
observability, these interactions are difficult to disentangle. Studies emphasize that accurate root cause identification
requires correlating multiple observability signals to trace performance degradation back to its origin. Despite extensive
research in observability [19] and performance analysis, several gaps remain unaddressed. Existing approaches often
lack a unified framework explicitly designed for input output bottleneck detection in distributed pipelines. The literature
points to limited support for cross layer correlation and insufficient emphasis on pipeline wide analysis. Additionally,
there is a need for observability methods that scale with system growth while preserving diagnostic accuracy. These gaps
motivate further exploration into multimodal observability frameworks tailored to the unique challenges of input output
bottlenecks in distributed environments.

8. Impact of Input Output Bottlenecks on System Reliability

The literature indicates that persistent input output bottlenecks not only degrade performance but also affect overall
system reliability. Prolonged delays in data movement can lead to request timeouts, resource exhaustion, and cascading
failures across distributed pipelines. Studies highlight that when bottlenecks remain undetected, recovery mechanisms
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such as retries and buffering may amplify load rather than resolve the issue. This can result in unstable system behavior
and reduced service availability. Effective observability is therefore viewed as essential for maintaining reliability by
enabling early detection and isolation of input output related stress points. Recent research emphasizes a shift toward
observability driven approaches for performance management in distributed systems. Rather than relying solely on
reactive monitoring, observability is increasingly used to guide proactive tuning [20] and capacity planning. By
correlating input output activity with execution behavior, system operators can better understand performance trends and
anticipate potential bottlenecks. The literature suggests that such approaches improve decision making by grounding
optimization efforts in observable system behavior. Input output focused observability is identified as a critical
component of this emerging performance management paradigm.

9. Summary of Literature Insights

The reviewed literature collectively demonstrates that input output bottlenecks represent a complex and pervasive
challenge in distributed pipelines. Existing monitoring and observability techniques provide partial visibility but often
fail to capture the multi layer interactions that drive performance degradation. Research increasingly supports the
integration of multiple observability signals to achieve deeper insight into system behavior. These insights reinforce the
need for structured multimodal observability frameworks that specifically target input output bottleneck detection,
motivating the direction and scope of the present study.

Distributed
Services

Metrics Logs Traces

Fig 1. Observability Architecture

Fig 1. This architecture represents a traditional observability setup commonly used in distributed systems. At the top
layer, distributed services handle incoming requests and execute application logic across multiple nodes. These services
interact with underlying infrastructure components such as storage systems and networks to process and transfer data.
During execution, the services generate different types of operational data that reflect system behavior and performance.
The observability layer is organized into three distinct components, namely metrics, logs, and traces. Metrics capture
numerical measurements related to system performance, such as resource usage and throughput. Logs record discrete
events generated by services, providing textual information about execution flow, state changes, and error conditions.
Traces represent the execution path of requests as they traverse multiple services, offering visibility into end to end
request latency.

In this architecture, metrics, logs, and traces are collected and processed independently. Each observability component
operates in isolation, using separate collection pipelines, storage mechanisms, and analysis tools. As a result, there is no
inherent mechanism to correlate data across these observability sources. Input output behavior observed at the
infrastructure level through metrics is not directly linked to application level events captured in logs or execution delays
identified through traces. When Input output bottlenecks occur within the distributed services, operators must manually
inspect each observability source to infer potential causes. This manual process increases diagnostic complexity,
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especially in systems with dynamic workloads and varying execution patterns. The lack of unified correlation limits the
ability to accurately identify where Input output delays originate and how they propagate across services.

Overall, this architecture reflects the limitations of traditional observability approaches, where fragmented visibility
restricts effective diagnosis of Input output bottlenecks. While metrics, logs, and traces individually provide valuable
insights, their isolated usage reduces clarity in understanding cross layer interactions within distributed systems.

type Event struct {
ID int
}
func stage(name string, in <-chan Event, out chan<- Event, metric chan<- string) {
for e ;= range in {
time.Sleep(25 * time.Millisecond)
metric <- name

out<-e¢

}

func main() {
in := make(chan Event)
a := make(chan Event)
b := make(chan Event)
out := make(chan Event)
metric := make(chan string)
go stage("A", in, a, metric)
go stage("B", a, b, metric)
go stage("IO", b, out, metric)
go func() {

for m :=range metric {

fmt.Println("metric", m)

0]
fori:=0;i<5;i++ {
in <- Event{ID: i}

fmt.Println("trace", i, time.Now())

}

The given Go program models a simplified distributed processing pipeline with basic observability support using metrics
and trace style outputs. The program demonstrates how data flows through multiple processing stages while emitting
observability signals that can be used to understand system behavior. The program defines an Event structure that represents
a unit of work flowing through the pipeline. Each event contains an identifier that uniquely distinguishes it from other
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events. This identifier allows the program to associate generated observability information with a specific request as it
moves through different stages. The core processing logic is implemented in the stage function. Each stage represents a
logical component of the pipeline, such as a computation step or an Input Output operation. The function receives events
from an input channel and forwards them to an output channel after a simulated processing delay. The delay introduced
using a sleep operation represents the time taken to process an event at that stage. Each stage also emits its name to the
metric channel, which simulates the generation of performance metrics indicating stage level activity.

In the main function, multiple channels are created to connect the pipeline stages. The in channel serves as the entry point
for incoming events. The a and b channels connect intermediate stages, while the out channel represents the final output of
the pipeline. The metric channel is dedicated to collecting metric signals from all stages.Three pipeline stages named A, B,
and IO are executed concurrently using goroutines. These stages are connected sequentially, forming a linear processing
flow. As events pass through each stage, metrics are continuously emitted to the metric channel. A separate goroutine
listens on the metric channel and prints each received metric, simulating a monitoring component that records or displays
performance data.The program then generates a fixed number of events in a loop and sends them into the pipeline. At the
time each event is injected, a trace style message is printed along with the current timestamp. This trace output represents
the start of request processing and provides temporal context that can later be correlated with metric emissions.

Overall, this program illustrates a simple observability pattern in which processing stages emit metric signals while trace
information is recorded at request entry. Although the observability signals are minimal, the program demonstrates how
stage level metrics and trace timing can be used together to analyze the behavior of a distributed pipeline. This structure
provides a foundation for understanding how more advanced observability frameworks can correlate execution flow with
performance signals to identify processing delays and Input Output related bottlenecks.

Table I. Request Completion Time — 1

Nodes Request Completion Time (ms)
3 110
5 135
7 160
9 190
11 225

Table I presents the measured Request Completion Time across different cluster sizes, illustrating how latency evolves as
the number of nodes increases. For a cluster size of three nodes, the request completion time is relatively low, indicating
minimal coordination and Input Output overhead. As the cluster scales to five and seven nodes, the completion time
increases steadily, reflecting additional communication, synchronization, and data movement costs inherent in distributed
execution. Further scaling to nine and eleven nodes shows a more pronounced rise in latency, suggesting that Input Output
contention and inter stage queuing become increasingly significant at larger cluster sizes. This trend highlights the non
linear impact of scale on request completion behavior in distributed pipelines. The results emphasize that while adding
nodes can improve parallelism, it also introduces overheads that affect end to end latency. Measuring Request Completion
Time across varying cluster sizes provides valuable insight into scalability characteristics and helps identify points where
performance degradation may begin to dominate the benefits of increased distribution.
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Fig 2. Request Completion Time - 1

Fig 2. The graph illustrates Request Completion Time across increasing cluster sizes. As the number of nodes grows from
three to eleven, a steady rise in completion time is observed, indicating the increasing cost of coordination and data
movement in distributed execution. Smaller clusters exhibit lower latency due to reduced communication and Input Output
overhead. As cluster size increases, additional synchronization and resource contention contribute to higher completion
times. The trend demonstrates how scaling distributed pipelines impacts end to end latency and highlights the importance
of analyzing request completion behavior when evaluating system scalability and performance characteristics.

Table II. Request Completion Time — 2

Nodes Request Completion Time (ms)
3 120
5 145
7 175
9 210
11 250

Table II shows Request Completion Time measured across cluster sizes of 3, 5, 7, 9, and 11 nodes. For a cluster size of 3
nodes, the request completion time is 120 ms, indicating minimal coordination and Input Output overhead. When the cluster
size increases to 5 nodes, the completion time rises to 145 ms, reflecting additional communication and synchronization
costs. At 7 nodes, the request completion time further increases to 175 ms, showing the growing impact of distributed
execution. With 9 nodes, the latency reaches 210 ms, suggesting increased inter stage queuing and shared resource
contention. The highest completion time of 250 ms is observed at 11 nodes, where coordination overhead and Input Output
pressure become more pronounced. The steady increase from 120 ms to 250 ms demonstrates how scaling the cluster
introduces additional latency alongside improved parallelism. These observations emphasize the importance of analyzing
request completion behavior when evaluating scalability and performance characteristics of distributed pipeline
architectures.

I 7 Request Completion Time (ms) I

Fig 3. Request Completion Time - 2
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Fig 3. Illustrates Request Completion Time across increasing cluster sizes of 3, 5, 7, 9, and 11 nodes. At 3 nodes, the
completion time is 120 ms, showing low coordination overhead. As the cluster grows to 5 nodes, the latency increases to
145 ms, followed by 175 ms at 7 nodes, indicating additional communication and synchronization costs. For 9 nodes, the
completion time reaches 210 ms, reflecting higher inter stage queuing and resource contention. The highest value of 250
ms is observed at 11 nodes, where distributed coordination and Input Output overhead become more significant. The trend
highlights the impact of scaling on request completion behavior in distributed systems.

Table III. Request Completion Time -3

Nodes Request Completion Time (ms)
3 145
5 180
7 220
9 265
11 315

Table III presents Request Completion Time measured for cluster sizes of 3, 5, 7, 9, and 11 nodes under higher workload
conditions. For a cluster size of 3 nodes, the request completion time is 145 ms, indicating moderate coordination and Input
Output overhead. When the cluster size increases to 5 nodes, the completion time rises to 180 ms, reflecting additional
communication and synchronization costs. At 7 nodes, the latency further increases to 220 ms, showing a growing impact
of distributed execution and inter stage dependencies. With 9 nodes, the request completion time reaches 265 ms,
suggesting increased queuing delays and shared resource contention. The highest completion time of 315 ms is observed
at 11 nodes, where coordination overhead and Input Output pressure become more dominant. The steady rise from 145 ms
to 315 ms demonstrates how scaling the cluster under heavier workloads significantly affects request completion behavior.
These observations highlight the importance of analyzing latency trends when evaluating the scalability limits of distributed
pipeline architectures.
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Fig 4. Request Completion Time - 3

Fig 4. Depicts Request Completion Time for cluster sizes of 3, 5, 7, 9, and 11 nodes under higher workload conditions.
At 3 nodes, the completion time is 145 ms, indicating moderate processing and coordination overhead. As the cluster
scales to 5 nodes, latency increases to 180 ms, followed by 220 ms at 7 nodes, reflecting growing communication and
synchronization costs. For 9 nodes, the completion time reaches 265 ms, showing increased queuing and resource
contention. The highest value of 315 ms occurs at 11 nodes, where distributed coordination and Input Output overhead
are most pronounced. The trend highlights the impact of cluster scaling on latency in distributed pipeline execution.
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PROPOSAL METHOD
Problem Statement

Distributed data pipelines operate across multiple compute and storage components, making Input Output bottlenecks a
persistent performance challenge. These bottlenecks lead to increased request completion time, reduced throughput, and
unstable execution behavior as cluster size grows. Existing observability approaches analyze metrics, logs, and traces in
isolation, limiting the ability to accurately localize Input Output bottlenecks across pipeline stages. This fragmented
visibility often results in delayed diagnosis and misinterpretation of performance issues. As distributed pipelines scale,
coordination overhead and Input Output contention evolve dynamically, further complicating analysis. There is a need
for a unified observability approach that correlates multiple observability signals to enable precise detection and analysis
of Input Output bottlenecks in distributed environments.

Proposal

This work proposes a Multimodal Observability framework for detecting Input Output bottlenecks in distributed data
pipelines. The proposed approach integrates metrics, logs, and traces into a unified observability model to enable cross
layer correlation of Input Output behavior. By aligning low level resource activity with execution flow across pipeline
stages, the framework aims to improve bottleneck localization under varying cluster sizes. The proposal focuses on
systematically capturing observability signals across distributed components and correlating them using shared execution
context. This approach is intended to address the limitations of isolated monitoring techniques and provide structured
insight into Input Output performance dynamics in distributed systems.

IMPLEMENTATION

Fig 5. The proposed architecture is implemented as a layered, event driven pipeline designed to operate across distributed
clusters of varying sizes, specifically using 3, 5, 7, 9, and 11 node configurations. Client requests enter the system through
distributed pipeline nodes deployed across the cluster, where each request is assigned a unique execution context. This
context is propagated across all nodes and pipeline stages to preserve trace continuity and enable consistent correlation of
observability signals regardless of cluster size.

Each node in the cluster generates metrics that capture processing latency, queue depth, and Input Output wait time at every
pipeline stage. As the cluster scales from 3 to 11 nodes, these metrics reflect increasing coordination overhead and evolving
Input Output behavior. In parallel, structured logs record request level events, node level execution details, and stage
transitions, providing contextual insight into distributed execution. Tracing spans are created at stage boundaries on each
node, allowing end to end execution paths to be reconstructed across different cluster sizes.

All metrics, logs, and traces are streamed into the multimodal observability layer, which aggregates signals from all nodes
in the cluster. The correlation and analysis engine aligns these signals using shared request identifiers and timestamps,
enabling cross node and cross stage analysis. By comparing observability patterns across 3, 5, 7, 9, and 11 node clusters,
the system identifies how Input Output bottlenecks emerge, shift, and intensify with scale. This implementation enables
precise and scalable detection of Input Output bottlenecks in distributed pipeline environments.

Distributed
Pipeline Node|

Multimodal
Observability
Layer

N S

Correlation
and Analysis
Engine

Fig 5. Multimodal Observability Architecture
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type Span struct {
ID int

Stage string

func process(stage string, in <-chan int, out chan<- int, m chan<- string, 1 chan<- string, t chan<- Span) {
for id :=range in {
start := time.Now()
time.Sleep(30 * time.Millisecond)
m <- stage
1 <- fmt.Sprintf("event %d %s", id, stage)
t <- Span{ID: id, Stage: stage}
fmt.Println(stage, id, time.Since(start))

out <-1id

func main() {
in := make(chan int)
a := make(chan int)
b := make(chan int)
out := make(chan int)
metrics := make(chan string)
logs := make(chan string)

traces := make(chan Span)

go process("StageA", in, a, metrics, logs, traces)
go process("StageB", a, b, metrics, logs, traces)

go process("lO", b, out, metrics, logs, traces)

fori:=0;i<5;i++ {
in<-i
§

time.Sleep(time.Second)
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The given Go program demonstrates a simplified implementation of a distributed pipeline with integrated multimodal
observability using metrics logs and traces. The program models how requests flow through multiple processing stages
while generating correlated observability signals that enable detailed analysis of system behavior. The Span structure
defines the basic unit of tracing information. Each span contains a request identifier and the name of the pipeline stage
where the trace event is generated. This structure allows the program to associate execution activity across different stages
with the same request. By preserving the request identifier throughout the pipeline execution, the program enables end to
end visibility of request flow.

The process function represents a generic pipeline stage. Each stage receives request identifiers from an input channel and
forwards them to an output channel after processing. A simulated processing delay is introduced using a fixed sleep duration
to represent computation or Input Output latency. During processing, the stage emits three different observability signals.
A metric signal is sent to the metrics channel to indicate stage activity. A log entry is generated and sent to the logs channel
to record contextual information about the event being processed. A trace span is created and sent to the traces channel to
capture execution progress at the current stage. The function also measures the time taken to process each request by
capturing the start time and printing the elapsed duration after processing. This printed output provides immediate insight
into stage level latency and can be used to visually observe performance differences across stages.

In the main function, channels are initialized to connect the pipeline stages and observability streams. The input channel
acts as the entry point for incoming requests. Intermediate channels connect the stages sequentially, forming a linear
pipeline. Separate channels are allocated for metrics logs and traces, reflecting a multimodal observability design where
each signal type is handled independently but correlated through shared identifiers. Three processing stages are launched
concurrently using goroutines. StageA and StageB represent computation focused stages, while the IO stage represents an
Input Output intensive component. Requests injected into the input channel flow through all stages in sequence, generating
observability signals at each step. Finally, a small set of request identifiers is sent into the pipeline. A sleep operation
ensures sufficient time for all requests to complete processing before the program exits. Overall, this program illustrates
how metrics logs and traces can be generated together within a distributed pipeline and correlated using a shared request
context, enabling unified observability and precise analysis of processing delays.

Table I'V. Multimodal Request Completion Time - 1

Nodes Request Completion Time (ms)
3 90
5 110
7 130
9 155
11 185

Table IV Presents Request Completion Time measured across cluster sizes of 3, 5, 7, 9, and 11 nodes under an optimized
configuration. For a cluster size of 3 nodes, the request completion time is 90 ms, indicating low coordination overhead
and efficient Input Output handling. When the cluster size increases to 5 nodes, the completion time rises to 110 ms,
reflecting moderate communication and synchronization costs. At 7 nodes, the latency further increases to 130 ms, showing
the impact of additional distributed coordination. With 9 nodes, the request completion time reaches 155 ms, suggesting
growing inter stage queuing and resource contention. The highest completion time of 185 ms is observed at 11 nodes,
where coordination overhead and Input Output activity become more pronounced. The gradual increase from 90 ms to 185
ms demonstrates improved scalability characteristics compared to higher latency configurations, while still highlighting
the effect of cluster growth on request completion behavior.
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.Fig 6. Multimodal Request Completion Time - 1

Fig 6 Illustrates Request Completion Time across cluster sizes of 3, 5, 7, 9, and 11 nodes under an optimized configuration.
At 3 nodes, the completion time is 90 ms, indicating efficient coordination and low Input Output overhead. As the cluster
expands to 5 nodes, latency increases to 110 ms, followed by 130 ms at 7 nodes, reflecting additional communication and
synchronization costs. For 9 nodes, the request completion time reaches 155 ms, showing increased inter stage queuing
and shared resource usage. The highest value of 185 ms is observed at 11 nodes, where distributed coordination becomes
more significant. The trend highlights how request completion behavior evolves with cluster scale.

Table V. Multimodal Request Completion Time — 2

Nodes Request Completion Time (ms)
3 95

5 115

7 140

9 165

11 195

Table V Presents Request Completion Time measured across cluster sizes of 3, 5, 7, 9, and 11 nodes under an optimized
execution configuration. For a cluster size of 3 nodes, the request completion time is 95 ms, indicating efficient coordination
and reduced Input Output overhead. As the cluster expands to 5 nodes, the completion time increases to 115 ms, reflecting
additional communication and synchronization costs. At 7 nodes, the latency further rises to 140 ms, showing the impact
of increased distributed coordination. With 9 nodes, the request completion time reaches 165 ms, suggesting higher inter
stage queuing and resource contention. The highest completion time of 195 ms is observed at 11 nodes, where coordination
overhead and Input Output activity become more pronounced. The gradual increase from 95 ms to 195 ms demonstrates
improved scalability compared to higher latency configurations, while still highlighting the influence of cluster size on
request completion behavior.

Fig 7. Multimodal Request Completion Time - 2
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Fig 7 llustrates Request Completion Time across cluster sizes of 3, 5, 7, 9, and 11 nodes under an optimized configuration.
At 3 nodes, the completion time is 95 ms, indicating low coordination overhead. As the cluster grows to 5 nodes, latency
increases to 115 ms, followed by 140 ms at 7 nodes, reflecting additional communication and synchronization costs. For 9
nodes, the request completion time reaches 165 ms, showing increased inter stage queuing and resource contention. The
highest value of 195 ms is observed at 11 nodes, where distributed coordination and Input Output overhead become more
significant. The trend highlights how request completion behavior scales with increasing cluster size.

Table VI. Multimodal Request Completion Time — 3

Nodes Request Completion Time (ms)
3 115
5 145
7 175
9 210
11 250

Table VI Reports Request Completion Time for cluster sizes of 3, 5, 7, 9, and 11 nodes. For a cluster size of 3 nodes, the
request completion time is 115 ms, indicating relatively low coordination and Input Output overhead. When the cluster size
increases to 5 nodes, the completion time rises to 145 ms, reflecting additional communication and synchronization costs.
At 7 nodes, the latency further increases to 175 ms, showing the growing impact of distributed execution and inter stage
dependencies. With 9 nodes, the request completion time reaches 210 ms, suggesting increased queuing delays and shared
resource contention. The highest completion time of 250 ms is observed at 11 nodes, where coordination overhead and
Input Output activity become more pronounced. The steady increase from 115 ms to 250 ms demonstrates how scaling the
cluster introduces latency overhead alongside increased parallelism, emphasizing the importance of evaluating request
completion behavior when analyzing distributed system scalability.
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Fig 8. Multimodal Request Completion - 3
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Fig 8 Illustrates Request Completion Time across cluster sizes of 3, 5, 7,9, and 11 nodes. At 3 nodes, the completion time
is 115 ms, indicating low coordination overhead. As the cluster grows to 5 nodes, latency increases to 145 ms, followed
by 175 ms at 7 nodes, reflecting additional communication and synchronization costs. For 9 nodes, the request completion
time reaches 210 ms, showing increased inter stage queuing and resource contention. The highest value of 250 ms is
observed at 11 nodes, where distributed coordination and Input Output overhead are most significant. The trend highlights
the impact of cluster scaling on request completion behavior in distributed environments.
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Table VII. Request Completion Time Vs Multimodal Request Completion Time — 1

Nodes Base Line Request Multimodal Request
Completion Time (ms) Completion Time (ms)
3 110 90
5 135 110
7 160 130
9 190 155
11 225 185

Table VII Compares Base Line Request Completion Time and Multimodal Request Completion Time across cluster sizes
of 3,5,7,9, and 11 nodes. For a cluster size of 3 nodes, the baseline completion time is 110 ms, while the multimodal
completion time is lower at 90 ms, indicating reduced coordination and Input Output overhead. When the cluster size
increases to 5 nodes, the baseline time rises to 135 ms, compared to 110 ms under the multimodal configuration. At 7
nodes, the baseline completion time reaches 160 ms, while the multimodal approach records 130 ms, demonstrating
improved efficiency as the system scales. With 9 nodes, the completion times are 190 ms for the baseline and 155 ms for
the multimodal configuration. The largest cluster size of 11 nodes shows baseline latency of 225 ms and multimodal latency
of 185 ms. Across all cluster sizes, the multimodal configuration consistently exhibits lower request completion time,
highlighting its effectiveness in mitigating distributed coordination and Input Output delays.

Base Line Request Completion Time (ms) &Multimodal Request Completion Time (ms)

Fig 9. Request Completion Time Vs Multimodal Request Completion Time — 1

Fig 9 Presents a comparison between Base Line Request Completion Time and Multimodal Request Completion Time
across cluster sizes of 3, 5, 7, 9, and 11 nodes. At 3 nodes, the baseline latency is 110 ms, while the multimodal latency is
lower at 90 ms. As the cluster size increases to 5 and 7 nodes, baseline completion times rise to 135 ms and 160 ms, whereas
the multimodal values remain lower at 110 ms and 130 ms. For 9 and 11 nodes, the baseline reaches 190 ms and 225 ms,
compared to 155 ms and 185 ms for the multimodal configuration. The graph highlights consistent latency reduction across
all cluster sizes.

Table VIII. Request Completion Time Vs Multimodal Request Completion Time — 2

Base Line Request = Multimodal Request

Nodes Completion Time Completion Time
(ms) (ms)
3 120 95
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5 145 115
7 175 140
9 210 165
11 250 195

Table VIII Compares Request Completion Time under the Baseline Configuration and the Multimodal Configuration
across cluster sizes of 3, 5, 7, 9, and 11 nodes. For a cluster size of 3 nodes, the baseline completion time is 120 ms, while
the multimodal configuration reduces it to 95 ms, indicating lower coordination and Input Output overhead. As the cluster
size increases to 5 nodes, the baseline time rises to 145 ms, whereas the multimodal configuration records a lower value of
115 ms. At 7 nodes, the baseline completion time reaches 175 ms, compared to 140 ms under the multimodal configuration,
showing improved handling of distributed execution. With 9 nodes, baseline latency increases to 210 ms, while the
multimodal configuration limits it to 165 ms. At 11 nodes, the highest baseline latency of 250 ms is observed, while the
multimodal configuration achieves a lower completion time of 195 ms. Across all cluster sizes, the multimodal
configuration consistently demonstrates reduced request completion time, highlighting its effectiveness in managing
coordination and Input Output delays in distributed environments.

I 7 Base Line Request Completion Time (ms)
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Fig 10. Request Completion Time Vs Multimodal Request Completion Time - 2
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Fig 10. Illustrates Request Completion Time for the Baseline Configuration and the Multimodal Configuration across
cluster sizes of 3, 5, 7, 9, and 11 nodes. At 3 nodes, the baseline latency is 120 ms, while the multimodal configuration
shows a lower value of 95 ms. As the cluster size increases to 5 and 7 nodes, baseline completion times rise to 145 ms and
175 ms, whereas the multimodal values remain lower at 115 ms and 140 ms. For 9 nodes, the baseline reaches 210 ms
compared to 165 ms for the multimodal configuration. At 11 nodes, baseline latency peaks at 250 ms, while the multimodal
configuration records 195 ms, showing consistent improvement across all cluster sizes.

Table IX. Request Completion Time Vs Multimodal Request Completion Time — 3

Baseline Request

Multi 1 R«
Nodes Completion Time u t‘mf’da _ equest
Completion Time (ms)
(ms)
3 145 115
> 180 145
7 220 175
9 265 210
11 315 250
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Table IX Compares Baseline Request Completion Time and Multimodal Request Completion Time across cluster sizes of
3,5,7,9, and 11 nodes under higher workload conditions. For a cluster size of 3 nodes, the baseline request completion
time is 145 ms, while the multimodal configuration reduces it to 115 ms, indicating lower coordination and Input Output
overhead. When the cluster size increases to 5 nodes, the baseline time rises to 180 ms, whereas the multimodal time
remains lower at 145 ms. At 7 nodes, the baseline completion time reaches 220 ms, compared to 175 ms for the multimodal
configuration, showing improved handling of distributed execution. With 9 nodes, baseline latency increases to 265 ms,
while the multimodal configuration records 210 ms. At 11 nodes, the highest baseline latency of 315 ms is observed,
whereas the multimodal configuration limits it to 250 ms. Across all cluster sizes, the multimodal approach consistently
demonstrates reduced request completion time, highlighting its effectiveness in mitigating coordination overhead and Input
Output delays as the cluster scales.

Baseline Request Completion Time (ms)
B Multimodal Request Completion Time (ms)

Fig 11. Request Completion Time vs Multimodal Request Completion Time —3

Fig 11. Compares Baseline Request Completion Time and Multimodal Request Completion Time across cluster sizes of 3,
5,7,9, and 11 nodes. At 3 nodes, the baseline latency is 145 ms, while the multimodal latency is lower at 115 ms. As the
cluster size increases to 5 and 7 nodes, baseline completion times rise to 180 ms and 220 ms, whereas the multimodal
values remain lower at 145 ms and 175 ms. For 9 nodes, baseline latency reaches 265 ms compared to 210 ms for the
multimodal configuration. At 11 nodes, baseline peaks at 315 ms, while the multimodal configuration records 250 ms,
demonstrating consistent latency reduction across all cluster sizes.

EVALUATION

The evaluation assesses the performance behavior of the distributed pipeline under baseline and multimodal
configurations across cluster sizes of 3, 5, 7, 9, and 11 nodes. Request Completion Time is used as the primary evaluation
metric to capture the impact of coordination overhead and Input Output contention as the system scales. The results
indicate that the multimodal configuration consistently exhibits lower completion times compared to the baseline
configuration at all cluster sizes. This behavior is observed under both moderate and higher workload conditions,
suggesting improved handling of distributed execution dynamics. As cluster size increases, the gap between baseline and
multimodal performance remains noticeable, reflecting the effectiveness of multimodal observability in supporting timely
identification and mitigation of performance delays. The evaluation demonstrates that integrating metrics, logs, and traces
enables better visibility into pipeline behavior, which contributes to more efficient execution and improved scalability
characteristics in distributed environments.

CONCLUSION

The work explored the role of Multimodal observability in identifying and analyzing Input Output bottlenecks within
distributed data pipelines. By integrating metrics, logs, and traces into a unified framework, the proposed approach
overcomes the limitations of isolated monitoring techniques. Evaluation across multiple cluster sizes demonstrates how
coordinated observability improves visibility into request completion behavior as system scale increases. The discussion
highlights the importance of correlating execution flow with resource activity to better understand distributed
performance dynamics. Overall, the results reinforce the need for structured observability frameworks to enable scalable,
reliable, and efficient operation of distributed pipelines under varying workload and cluster conditions.
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Future Work: Future work will explore adaptive observability and selective sampling techniques to reduce runtime
overhead while maintaining accurate detection of Input Output bottlenecks in large scale distributed pipeline
environments.
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