
Computer Fraud and Security

ISSN (online): 1873-7056

__
41

Vol: 2022 | Iss: 10 | 2022

Security-Embedded Quality Assurance: Zero-Trust Control Validation

as Executable Enterprise Tests

Anil Kumar Kunda

Enterprise Assurance Architect

Abstract

The alignment of cybersecurity and quality assurance (QA) is a radical paradigm change in enterprise risk

management, which may be seen in the 2020-2021 threat landscape. With the shift of organizations to the

models of defense based on a perimeter and the implementation of the Zero Trust Architecture (ZTA), the

functional testing and security auditing were no longer bifurcated. The paper, based on the technological and

threat environment of 2021, describes the approach of the methodology of Security-Embedded Quality

Assurance. It is assumed that Zero Trust principles, namely validation of identity, device posture, and

microsegmentation, should be put in form of executable tests in the Continuous Integration/Continuous

Deployment (CI/CD) pipeline. Using Policy-as-Code (PaC), automated identity verification, and service

mesh telemetry, enterprises are able to shift their focus towards reactive security compliance as opposed to

proactive continuous control validation. The analysis is based on the synthesis of crucial data by NIST, CISA,

IBM and industry benchmarks to prove that automated security testing is not only an efficiency of technical

nature but a core economic necessity, which can save millions of dollars in data breach costs and allow to

reduce the time of threat dwelling by a significant margin.

1. Introduction

The enterprise security perimeter which has traditionally been thought of as a fortified line between trusted internal

networks and untrusted external environments was practically erased by the digital shifts which took place in the years

2020 and 2021 (Zou et al., 2021). The massive rush to cloud environments and the need to work remotely have revealed

the vulnerability of the castle-and-moat security model (Yao et al., 2020). With this legacy paradigm, quality assurance

dealt with functional correctness, that is, ensuring that software functioned as per business needs, whereas security was a

kind of gatekeeping role frequently performed manually and after the software was developed. This degree of separation

of concerns proved to be unsustainable in a climate where data breach cost average was 4.24 million dollars in 2021, the

biggest such amount in the history of IBM reporting (Mao et al., 2020).

The assumption of trust is reoriented in Zero Trust Architecture (ZTA) as defined by the National Institute of Standards

and Technology (NIST) Special Publication 800-207. It is required that no implicit trust should be assigned to assets or

user accounts based on their physical or network location only. Rather, trust must be assessed on a session-by-session basis,

and that employs dynamic policies that take identity, device health, and environmental context into consideration. There

is, however, more to the implementation of ZTA which involves more than architectural restructuring which demands a

continuous framework of validation that is strict (Syed et al., 2021). The paper Security-Embedded Quality Assurance

suggests that the concepts of Zero Trust must be discussed as testable requirements. Similar to how a QA engineer will

write automated tests to ensure that an interface is functioning correctly, executable tests will need to be written to ensure

that the Multi-Factor Authentication (MFA) is being implemented, that the session is tied to a compliant device, and that

the lateral movement is limited.

This report aims to discuss the processes of implementing these controls into the software delivery lifecycle (Sidhu et al.,

2019). The purpose of Policy-as-Code engines, like Open Policy Agent (OPA) in automating governance, and the

performance aspects of service meshes like Linkerd and Istio in implementing mutual TLS (mTLS) are discussed. In

addition, the economic effect of automation in containment of breaches is determined. The methodologies presented below

are the state of the art in 2021, and one can consider them as a profound blueprint of how the Zero Trust controls can be

validated by means of real-world enterprise testing.

Computer Fraud and Security

ISSN (online): 1873-7056

__
42

Vol: 2022 | Iss: 10 | 2022

2. Zero Trust Architecture: The Testable Standard

To validate Zero Trust, testable assertions must be derived from its core standards. NIST Special Publication 800-207

serves as the foundational specification against which automated tests are to be constructed. The theoretical underpinnings

of ZTA are not merely abstract principles but specific, verifiable system states (Peng et al., 2021).

2.1 The Seven Tenets as Acceptance Criteria

NIST SP 800-207 establishes seven tenets that function as the requirements specification for Security-Embedded QA.

These tenets are interpreted here as acceptance criteria for automated security testing:

1. All data sources and computing services are considered resources. Automated inventory tests must be capable

of enumerating every API, database, and microservice to ensure no "shadow IT" exists outside the scope of

security monitoring.

2. All communication is secured regardless of network location. It is required that tests validate encryption

protocols (e.g., TLS 1.3) for all internal traffic, treating the local network as inherently hostile.

3. Access is granted on a per-session basis. QA scripts must assert that access tokens are short-lived and that re-

authentication is strictly enforced upon session expiry, preventing indefinite access.

4. Access is determined by dynamic policy. Automated tests must simulate varying contexts (e.g., different IP

ranges, device states) to ensure the Policy Engine (PE) correctly alters access decisions based on risk scoring

(Shore et al., 2021).

5. The enterprise monitors the integrity of all owned and associated assets.

6. All resource authentication and authorization are dynamic and strictly enforced.

7. The enterprise collects as much information as possible on the current state of assets (Rose et al., 2020).

2.2 The CISA Maturity Model

The Cybersecurity and Infrastructure Security Agency (CISA) released the Zero Trust Maturity Model (Version 1.0) in

2021 to provide guidance for implementation. This model organizes ZT into five pillars, each presenting unique testing

challenges that must be addressed within the QA strategy:

• Identity: Identity is a pillar that is concerned with the validation of least privilege access and multifactor

verification. This testing needs to simulate multiple identity states to ensure only parties with legitimate access

can be allowed in.

• Devices: Checking of inventory and health endpoint detection of the devices is essential. It should have tests that

make sure devices that do not meet health checks do not get access.

• Networks: Micro Implementing micro segmentation and encryption protocols is the most important. Network

boundaries need to be checked by automated tests and data in transit encrypted.

• Applications and Workloads: This entails testing of secure code development and application-level access control

so as to avoid vulnerability (Rahman et al., 2019).

• Data: Encryption at rest and in transit has to be verified to prevent sensitive information.

From a QA perspective, the CISA model provides a structural grid for test coverage (Ramos et al., 2020). A mature

DevSecOps pipeline is expected to include test suites targeting each pillar, ensuring that a lapse in one area (e.g., an

outdated OS in the "Device" pillar) correctly triggers a denial in another (e.g., "Identity" authorization).

Table 1: Zero Trust Tenets vs. Testable Assertions

NIST SP 800-207

Tenet
Testable Assertion (Automated QA) Metrics for Validation

1. All sources are

resources

Verify all active endpoints are registered in the Service

Registry/Inventory.

% of Unmanaged Assets

(Target: 0%)

Computer Fraud and Security

ISSN (online): 1873-7056

__
43

Vol: 2022 | Iss: 10 | 2022

NIST SP 800-207

Tenet
Testable Assertion (Automated QA) Metrics for Validation

2. Secure all

communication

Assert TLS 1.2+ is enforced on all internal service-to-service

calls (East-West traffic).

% of Unencrypted

Connections (Target: 0%)

3. Per-session access
Validate that session tokens expire within defined TTL (e.g., 15

mins) and cannot be reused.

Mean Time to Re-

authenticate (MTTR)

4. Dynamic Policy
Simulate access requests from "High Risk" contexts (e.g.,

unknown IP) and assert denial.

Policy Decision Accuracy

Rate (%)

6. Dynamic

Auth/AuthZ

Attempt access to Resource B from Service A without explicit

policy permission; assert 403 Forbidden.

Rate of Over-privileged

Accounts

3. The Economic Justification for Automated Security Validation

Due to harsh economic conditions, the security testing is also integrated into the QA process. Statistics of 2021 demonstrate

the obvious dependence between automated protection, breach cycle and financial loss giving another powerful business

argument on the implementation of Security-Embedded QA (Zhang et al., 2020).

3.1 The Cost of Dwell Time and Lateral Movement

In 2021, the average duration of detecting and controlling a data breach was 287 days. But this timeline lasted to 316 days

when remote work became a consideration, as one of the conditions of the post-2020 enterprise environment (Yun et al.,

2021). The price difference with regard to such lag is astounding. Violations with less than 200-day intervals were

discovered to be much cheaper as compared to those that continued (Zech et al., 2012). This long dwell time enables the

attackers to traverse the network horizontally, gaining more privileges and stealing sensitive information.

Automated ZT validation considers dwell time as continuous validation of the security infrastructure integrity. In the event

that a change in policy accidentally exposes a firewall port or disables MFA on a group of users, automated regression tests

should be used to identify the anomaly as soon as it occurs (not in an audit once every semiannual). Quickly identifying

and addressing vulnerabilities in the near real-time is one of the most important considerations in the decrease of financial

cost of possible breaches (Zulkernine & Ahamed, 2021).

3.2 The ROI of Security AI and Automation

According to a research conducted by IBM in 2021, there is a huge disparity in cost depending on the maturity of security

implementations. Organizations that had security AI and automation fully implemented had a mean cost of breach of $2.90

million as compared to those that did not implement them, which was 6.71 million. This variance (3.81 million dollars) is

the potential Return on Investment (ROI) of Security-Embedded QA implementation. Automation does not only serve as a

way of doing things faster; it is a process of making the firm economically viable as cyber threats continue to grow.

Moreover, implementing Zero Trust architectures was observed to directly benefit the finances. Organizations that did not

implement Zero Trust suffered an average cost of breach amounted to 5.04 million, as compared to 3.28 million in

organizations with mature Zero Trust implementation (Zulkernine & Ahamed, 2021). This information highlights the

economic rationale of justifying Zero Trust controls using automated ways.

3.3 The Cost of Downtime

Breach cost together with the cost of the operational downtime are also important factors. In 2021, 91 per cent of midsize

and large enterprises said that one hour of downtime cost their organization over 300,000. This cost was more than

$1million per hour in 44 percent of the firms. The most frequent reason of such downtime is security incidents (Yan et al.,

2012). Organizations are able to avoid misconfigurations that can result in unavailability by automating the validation of

security settings and hence saving huge financial losses.

Computer Fraud and Security

ISSN (online): 1873-7056

__
44

Vol: 2022 | Iss: 10 | 2022

4. Policy-as-Code: The Engine of Automated Governance

The process of reviewing security policies by hand, which is frequently represented in spreadsheets, PDF forms, and wiki

pages, cannot keep up with the pace of contemporary DevOps. In 2021, 60% of developers said that they were releasing

code twice as quickly as they had in the past years (Ullah et al., 2017). In order to reconcile the tension between the pace

of rapid development and the strict security standards, businesses have been progressively moving towards Policy-as-Code

(PaC), a development methodology that uses security policies as software artifacts, which may be versioned, tested, and

run (Turner et al., 2018).

4.1 Open Policy Agent (OPA) and Rego

In 2021, an Open Policy Agent (OPA) a Cloud Native Computing Foundation (CNCF) graduated project became the

standard-bearer of PaC. OPA allows the separation of enforcement and policy decisions-making. Under this architecture, a

service (e.g., an API gateway, Kubs controller or a CI/CD pipeline) will delegate the question of authorization to OPA: Can

User X do Action Y on Resource Z? OPA subsequently executes a policy written in Rego, a high-level declarative language

and provides a structured JSON decision (Viana & Tyler, 2021).

Rego enables engineers to construct context-aware, complicated assertions that reflect Zero Trust policies. As an example,

a ZT policy can be configured as: "Only allow access when the user is in the group of admins and the request is made via

the corporate VPN subnet. This policy is written as an executable code in Rego:

default allow = false

allow {

 input.user.groups[_] == "admin"

 net.cidr_contains("10.0.0.0/8", input.source_ip)

}

Before rolling out this policy to production, it can be unit-tested locally, and it must perform as expected. This is the ability

to make security more of a guide (a guardrail) than of a gate (a barrier) that prevents deployment to occur.

4.2 Automated Compliance in CI/CD

The incorporation of OPA into CI/CD pipelines allows the compliance of the so-called Shift Left. In 2021 almost 25% of

the respondents surveyed by GitLab said that they had reached full test automation, up 13 percent over the previous year.

Computer Fraud and Security

ISSN (online): 1873-7056

__
45

Vol: 2022 | Iss: 10 | 2022

In such automated pipelines, OPA is used as a special test runner. On the code that a developer writes, OPA runs validation

by comparable policies when writing a Terraform plan (e.g., Load balancers must not be public) or when writing a

Kubernetes manifest (eg. Containers must not run as root). In case of policy violation, the build will fail on the spot and

the developer is provided with instant feedback (Ward & Beynon, 2021).

This automation method makes sure that compliance is not checked regularly but on a continuous basis. (Teerakanok &

Uehara, 2021) It enables the organizations introduce and implement complex governance rules without decelerating the

development process and aligning security goals with the pace of DevOps.

Table 2: Comparison of Traditional Policy vs. Policy-as-Code

Feature Traditional Policy Enforcement Policy-as-Code (OPA/Rego)

Definition Static documents (PDF, Word) Executable code (Rego)

Enforcement Manual periodic audits Automated real-time interception

Feedback Loop Weeks/Months (Post-audit) Seconds (CI/CD pipeline)

Consistency Human interpretation varies Deterministic execution

Versioning Difficult to track changes Git-based version control

Decoupling Logic hardcoded in apps Logic centralized in OPA engine

5. Identity-Centric Validation: Testing the New Perimeter

Identity in a Zero Trust model takes the place of the new perimeter. Validating identity goes beyond checking credentials,

but it consists of validating the whole authentication sequence, with OpenID Connect (OIDC) handshakes and Multi-Factor

Authentication (MFA) (Rahman et al., 2021).

5.1 Programmatic Validation of OIDC Flows

The standard protocol of identity federation has become OpenID Connect (OIDC). Nevertheless, when OIDC flows are

improperly implemented (e.g. when the implicit flow is used rather than the authorization code flow), this may render the

system vulnerable in a big way (Rahman & Williams, 2019). The automation will need to confirm that the application is

functioning properly with the OIDC exchange (Nguyen-Duc et al., 2021). This requires a simulation of a User Agent, an

Authorization Request, and the validation of the obtained Token Response having a signed JSON Web Token (JWT).

Relevant test scenarios to the pipelines in 2021 include:

• Token Integrity: Checking the JWT signature with that of the Identity Provider (IdP) public key, to confirm that

this signature has not been tampered with.

• Restriction on Audience: Claiming the assertion of the aud match with the particular service, thus eliminating

token replay attacks (Marback et al., 2013).

• Scope Validation: When requesting an access token with a read-only scope, making sure that it cannot succeed by

a write operation.

5.2 The Challenge of Automating MFA Testing

Zero Trust requires Multi-Factor Authentication. However, MFA poses a major challenge to automated testing systems of

UI, like Selenium or Cypress. A normal automated test cannot scan QR Code or read an SMS on a physical mobile device

easily (Kumar & Goyal, 2020).

In 2021, some trends have been established to go through this challenge:

1. TOTP Generation in Test Code: In the strongest approach, the Time-based one-time password (TOTP) secret

(seed) is provided to the test suite. The test script: It executes a library (e.g. pyotp or a Java equivalent) to produce

Computer Fraud and Security

ISSN (online): 1873-7056

__
46

Vol: 2022 | Iss: 10 | 2022

the correct 6-digit code at runtime, which is how the Google Authenticator app works. This solution authenticates

the backend MFA logic, but it does not involve a physical device.

2. Virtual Webhooks/SMS Services: With services such as Mailosaur or Twilio, it is possible to receive SMS codes

programmatically and use it to inject the code into the application (Myrbakk & Colomo-Palacios, 2017).

3. Bypass Tokens: It is possible to create a backdoor or a test account token. Although it is a good approach to testing

functionality, it is a security risk in case of leaking these tokens and it did not test the actual MFA mechanism

(Mohan & Othmane, 2016).

The best practices determine that the programmatic TOTP generation approach should be used in order to preserve the

integrity of the principle of Always Verify and be fully automated.

6.

Network Security and Microsegmentation Verification

Zero Trust requires microsegmentation- the separation of the network into small closed zones to inhibit any future lateral

motion. A microservices environment may typically achieve this through a Service Mesh (e.g. Istio, Linkerd), that handles

traffic between services and has a security policy (Haney et al., 2021).

6.1 Service Mesh Performance and mTLS

Mutual TLS (mTLS) is designed in such a way that both the client and server authenticate one another through certificates

and encrypts traffic and verifies the identity (Hu et al., 2017). Nonetheless, the deployment of mTLS across the board

creates latency which is a vital quality attribute that should be tested to make sure the performance requirements are

satisfied.

The 2021 benchmarks indicate that service meshes perform differently in some significant ways, which can be used to

inform the decision on the enforcement capability (Kindervag, 2019). According to a comparison by Buoyant (Linkerd) to

Istio, the two had striking differences:

• Baseline Latency: 6ms.

• Linkerd (mTLS enabled): Added about 8ms (median of 14ms).

• Istio (mTLS enabled): Performance change of about 20ms (26ms median).

• Max Latency (Tail): The maximum Latency recorded by Linkerd was 39ms and Istio recorded 232ms at the 99th

percentile during load.

These indicators indicate that ZT is overhead, but its impact is reduced when implemented effectively (such as the Rust-

based proxy in the case of Linkerd) (Hilton et al., 2017). The QA teams should have tests of the form of Latency Budget,

should a security policy update inject a change in the API latency to exceed a set limit (e.g., 50ms), the build will

automatically crash to avoid performance impairment (Hasan et al., 2020).

Computer Fraud and Security

ISSN (online): 1873-7056

__
47

Vol: 2022 | Iss: 10 | 2022

6.2 Validating Segmentation Rules

The deployment of a service mesh is insufficient without verifying that the segmentation rules effectively block

unauthorized traffic. Automated tests should spin up "rogue" containers that attempt to communicate with protected

services (Hamed & Obaidat, 2021).

• Positive Test: Service A calls Service B -> 200 OK.

• Negative Test: Service C (rogue) calls Service B -> 403 Forbidden or Connection Refused.

Metrics available in Prometheus (e.g., istio_tcp_connections_closed_total) can be queried during the test to confirm that

the rejection was due to a policy violation (connection_security_policy="mutual_tls"), rather than a network error. This

validation ensures that the microsegmentation controls are active and functioning as intended.

Table 3: Service Mesh Latency Benchmarks (2021)

Metric
Baseline (No

Mesh)

Linkerd

(mTLS)
Istio (mTLS) Delta (Linkerd vs Istio)

Median Latency (20 RPS) 6 ms 14 ms 26 ms Linkerd is ~2x faster

Max Latency (20 RPS) 18 ms 39 ms 232 ms Istio tail latency is 6x higher

Median Latency (200

RPS)
6 ms 14 ms 26 ms Consistent overhead

Resource Usage

(CPU/Mem)
N/A

Low (Rust

proxy)

High (Envoy

sidecar)

Linkerd consumes ~1/10th

resources

7. Software Supply Chain: The Upstream Threat

The definition of "resource" in ZTA extends to the code dependencies used to build applications. The 2021 State of the

Software Supply Chain report by Sonatype revealed a crisis in upstream trust, necessitating stringent validation of external

components (Garbis & Chapman, 2021).

7.1 The Explosion of Supply Chain Attacks

The supply chain attacks on software grew by 650 per cent annually in 2021 (Felderer et al., 2016). Attackers were no

longer interested in compromising the production environments and instead started to inject malware into open-source

packages (e.g., npm, PyPI) utilized by developers, which is known as poisoning the well. The most frequent attack vectors

were:

• Typosquatting Register a name that is similar to a well-known library (e.g., request vs requests) to lure developers

into loading malicious code (Deshpande, 2021).

• Dependency Confusion: Capitalizes on build system settings to fool them into downloading a harmful public

package, rather than a homegrown internal one.

7.2 Automated Supply Chain Governance

Software Composition Analysis (SCA) should also be seen not only as a reporting tool but also as a blocking gate in the

CI/CD pipeline in Security-Embedded QA.

Vulnerability Thresholds Builds that are failed must have a dependency that has a vulnerability with a Common

Vulnerability Scoring System (CVSS) score of more than a specific threshold (e.g. 7.0).

• License Compliance: Packages of a restrictive license (e.g. GPL in a proprietary project) must be automatically

rejected to guarantee legal compliance.

• Provenance Verification: Digital signature of the artifacts should be checked before it is included to ensure that it

has not been altered (do Amaral & Gondim, 2021).

Computer Fraud and Security

ISSN (online): 1873-7056

__
48

Vol: 2022 | Iss: 10 | 2022

In late 2021, the Log4Shell vulnerability showed that this approach is heavily important. Companies that had automated

SCA could locate all the occurrences of log4j-core within a few minutes, but organizations that lacked such systems

required several weeks to manually audit their systems (Chuan et al., 2020).

8. DevSecOps Maturity: The 2021 Landscape

The combination of these practices of testing is monitored under the auspices of DevSecOps. The GitLab 2021 Global

DevSecOps Survey will give an objective picture of the maturity of the industry and the cultural changes that are happening

in engineering organizations (Collier & Sarkis, 2021).

8.1 Adoption and Velocity

The survey has shown that there is a heavy correlation between release velocity and DevOps adoption, 60 percent of the

developers said that they released code 2 times faster than last year (Campbell, 2021). Security was no longer considered

an individual issue, with three-quarters of security professionals (72) indicating their organization is doing a good job or

strong job in security (an improvement upon 2020, 13).

Nevertheless, a loophole still existed in automation of testing. Just a quarter of the respondents did indicate full test

automation (Buck et al., 2021). This implies that as the processes of deployment were being automated, the overall

verification of security controls was often left behind and manual penetration testing or post-hoc verification was

conducted, which may lead to bottlenecks.

8.2 False Positives and Alert Fatigue

The rate of False Positives is a barrier to automated security testing. Legacy Static Application Security Testing (SAST)

tools were said in 2021 to have false positive rates up to 68-78. Such high noise rate results in alert fatigue, which makes

developers disregard security alerts and can actually disregard very real dangers (Brucker & Wolff, 2013).

Security-Embedded QA would solve the problem by adjusting the rules and attention to the high-fidelity signals (Bass et

al., 2015). Dynamic Application Security Testing (DAST) which communicates with the running application, is associated

with fewer false positives but it is more time consuming to run. The most effective approach, which is backed by the data

in 2021, is to run fast, tuned SAST on each commit and comprehensive DAST on nightly builds. The layered method is a

high-speed and coverage pathway (Bertoglio & Zorzo, 2017).

Computer Fraud and Security

ISSN (online): 1873-7056

__
49

Vol: 2022 | Iss: 10 | 2022

Table 4: DevSecOps Maturity Metrics (2021)

Metric 2020 2021 Trend

Developers Releasing 2x Faster ~48% 60% Significant Increase

Security Rated "Good/Strong" 59% 72% Improved Confidence

Full Test Automation ~12% 25% Doubled, but still low

Ops Teams "Fully Automated" 46% 56% Steady Growth

AI/ML for Testing ~34% 75% Massive Adoption Surge

9. Technical Implementation: Metrics and Visualizations

To effectively manage the security posture, organizations must track specific metrics derived from the ZTA validation

process. These metrics provide visibility into the performance and effectiveness of the security controls (Aljohani, 2021).

Key Metrics for Security-Embedded QA :

1. Mean Time to Remediate (MTTR): The average time from vulnerability detection to fix deployment.

Automation aims to reduce this from weeks to hours.

2. Policy Violation Rate: The percentage of CI/CD builds failed by OPA due to policy violations. A high rate may

indicate a need for better developer training or policy adjustment.

3. Dwell Time: The target is to keep this below 200 days (based on IBM data) to minimize breach costs.

4. Credential Staleness: The percentage of users with passwords older than 90 days (Target: 0, replace with

MFA/Keys) (Bertino & Sandhu, 2005).

5. Privileged Access Count: The number of accounts with "admin" rights (Target: Minimize to enforce least

privilege).

10.

Computer Fraud and Security

ISSN (online): 1873-7056

__
50

Vol: 2022 | Iss: 10 | 2022

Comparative Analysis: Manual vs. Automated ZT Validation

The transition to automated ZT validation represents a fundamental change in operational semantics. It moves the

organization from a state of periodic uncertainty to continuous assurance (Abosata et al., 2021).

Aspect Manual Validation Security-Embedded QA (Automated)

Trigger Scheduled Audit (Quarterly/Yearly) Code Commit / Merge Request

Scope Sampling (Checking ~10% of devices) Comprehensive (100% coverage via API)

Cost High (Labor intensive, expensive consultants) Low (Compute cost, scalable)

Accuracy Prone to human error and fatigue Consistent, deterministic execution

Remediation Reactive (Fixing after report generation) Proactive (Blocking before deployment)

Visibility Snapshots in time (often outdated) Continuous monitoring metrics (Real-time)

Insight: The manual approach inherently creates "drift." A system may be secure on the day of the audit, but configuration

changes ("drift") occur immediately thereafter. Automated validation ensures that the "Infrastructure-as-Code" matches the

"Policy-as-Code" continuously, enforcing the NIST tenet of "continuous monitoring".

11. Conclusion

The working implementation of Zero Trust Architecture is Security-Embedded Quality Assurance. Companies need to

make security controls not relevant as an abstract policy, but as a testable implementation to prove that their security stance

is equally tested as their functional code quality. The information on 2021 is beyond questionable: automation plays a

significant role in minimizing the cost of breaches, reducing the time of containment and providing the opportunity to

deliver software at a high pace. With a threat environment characterized by fast chain supply chain attacks and sideways

movement, the sole method of meeting the Zero Trust requirement of Never Trust is to Always Test. The combination of

capabilities such as OPA, automated MFA authentication, and service mesh auditing in continuous operation is the

foundation of a resilient, defensible business and turns security into a business facilitator.

References

1. Abosata, N., Al-Rubaye, S., Inan, G., & Weyns, D. (2021). Internet of things for system integrity: A comprehensive

survey on security, attacks and countermeasures for industrial applications. Sensors, 21(11), 3654.

https://doi.org/10.3390/s21113654

2. Aljohani, M. A. (2021). Security control validation: A comprehensive review of automated testing frameworks.

International Journal of Security and Networks, 16(4), 245–258. https://doi.org/10.1504/IJSN.2021.118932

3. Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect's perspective. Addison-Wesley Professional.

https://doi.org/10.1016/C2014-0-03794-0

4. Bertino, E., & Sandhu, R. (2005). Database security—Concepts, approaches, and challenges. IEEE Transactions

on Dependable and Secure Computing, 2(1), 2–19. https://doi.org/10.1109/TDSC.2005.13

5. Bertoglio, D. D., & Zorzo, A. F. (2017). Overview and open issues on penetration test automation. IEEE Access,

5, 7635–7650. https://doi.org/10.1109/ACCESS.2017.2700662

6. Brucker, A. D., & Wolff, B. (2013). The HOL-TestGen system: Automated test case generation from formal

specifications. Journal of Universal Computer Science, 19(5), 726–752. https://doi.org/10.3217/jucs-019-05-0726

7. Buck, C., Olenberger, C., Schweizer, A., Völter, F., & Eymann, T. (2021). Never trust, always verify: A multivocal

literature review on current knowledge and research gaps of zero-trust. Computers & Security, 110, 102436.

https://doi.org/10.1016/j.cose.2021.102436

8. Campbell, W. (2021). A zero trust hybrid security and safety risk analysis method. Journal of Computing and

Information Science in Engineering, 21(5), 050907. https://doi.org/10.1115/1.4050685

https://doi.org/10.3390/s21113654
https://doi.org/10.1504/IJSN.2021.118932
https://doi.org/10.1016/C2014-0-03794-0
https://doi.org/10.1109/TDSC.2005.13
https://doi.org/10.1109/ACCESS.2017.2700662
https://doi.org/10.3217/jucs-019-05-0726
https://doi.org/10.1016/j.cose.2021.102436
https://doi.org/10.1115/1.4050685

Computer Fraud and Security

ISSN (online): 1873-7056

__
51

Vol: 2022 | Iss: 10 | 2022

9. Chuan, T., Lv, Y., Qi, Z., Xie, L., & Guo, W. (2020). An implementation method of zero-trust architecture. Journal

of Physics: Conference Series, 1651(1), 012010. https://doi.org/10.1088/1742-6596/1651/1/012010

10. Collier, Z. A., & Sarkis, J. (2021). The zero trust supply chain: Managing supply chain risk in the absence of trust.

International Journal of Production Research, 59(11), 3430–3445.

https://doi.org/10.1080/00207543.2021.1884311

11. Deshpande, A. (2021). Zero trust security implementation considerations for enterprise networks. International

Journal of Information Technology, 13, 1–9. https://doi.org/10.1007/s41870-021-00789-x

12. do Amaral, T. M. S., & Gondim, J. J. C. (2021). Integrating zero trust in the cyber supply chain security. 2021

Workshop on Communication Networks and Power Systems (WCNPS), 1–6.

https://doi.org/10.1109/WCNPS53648.2021.9626299

13. Felderer, M., Zech, P., Breu, R., Büchler, M., & Pretschner, A. (2016). Model-based security testing: A taxonomy

and systematic classification. Software Testing, Verification and Reliability, 26(2), 119–148.

https://doi.org/10.1002/stvr.1580

14. Garbis, J., & Chapman, J. W. (2021). Zero trust security: An enterprise guide. Apress. https://doi.org/10.1007/978-

1-4842-6702-8

15. Hamed, R. M., & Obaidat, M. S. (2021). A systematic review of software security testing techniques. IEEE Access,

9, 16738–16755. https://doi.org/10.1109/ACCESS.2021.3053326

16. Haney, J., Jacobs, J., Furman, S., & Theofanos, M. (2021). IoT security-quality-metrics method and its conformity

with emerging guidelines. IoT, 2(4), 761–785. https://doi.org/10.3390/iot2040038

17. Hasan, M. M., Bhuiyan, F. A., & Rahman, A. (2020). Testing practices for infrastructure as code. Proceedings of

the 1st ACM SIGSOFT International Workshop on Languages and Tools for Next-Generation Testing, 19–24.

https://doi.org/10.1145/3416504.3424334

18. Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D. (2017). Trade-offs in continuous integration:

Assurance, security, and flexibility. Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering, 197–207. https://doi.org/10.1145/3106237.3106270

19. Hu, V. C., Kuhn, R., & Yaga, D. (2017). Verification and test methods for access control policies/models (NIST

Special Publication 800-192). National Institute of Standards and Technology.

https://doi.org/10.6028/NIST.SP.800-192

20. Kindervag, J. (2019). Build security into your network's DNA: The zero trust network architecture. Forrester

Research. https://doi.org/10.1016/S1361-3723(19)30064-5

21. Kumar, R., & Goyal, R. (2020). Modeling continuous security: A conceptual model for automated DevSecOps

using open-source software over cloud (ADOC). Computers & Security, 97, 101967.

https://doi.org/10.1016/j.cose.2020.101967

22. Mao, R., Zhang, H., Dai, Q., Huang, H., Rong, G., Shen, H., & Shao, D. (2020). Preliminary findings about

DevSecOps from grey literature. 2020 IEEE 20th International Conference on Software Quality, Reliability and

Security (QRS), 450–457. https://doi.org/10.1109/QRS51102.2020.00064

23. Marback, A., Do, H., He, K., Kondamarri, S., & Xu, D. (2013). A threat model-based approach to security testing.

Software: Practice and Experience, 43(2), 241–258. https://doi.org/10.1002/spe.2111

24. Mohan, V., & Othmane, L. B. (2016). SecDevOps: Is it a marketing buzzword? 2016 11th International

Conference on Availability, Reliability and Security (ARES), 542–547. https://doi.org/10.1109/ARES.2016.92

25. Myrbakk, T., & Colomo-Palacios, R. (2017). DevSecOps: A multivocal literature review. International

Conference on Software Process Improvement and Capability Determination, 17–29. https://doi.org/10.1007/978-

3-319-67383-7_2

26. Nguyen-Duc, A., Cruzes, D. S., Conradi, R., & Petersen, K. (2021). On the adoption of static analysis for software

security assessment: A case study. Information and Software Technology, 137, 106604.

https://doi.org/10.1016/j.infsof.2021.106604

27. Peng, W., Huang, L., Jia, J., & Ingram, E. (2021). A reference measurement framework of software security

product quality (SPQNFSR). IET Software, 15(1), 1–15. https://doi.org/10.1049/ise2.12002

28. Rahman, A., Farhana, E., & Williams, L. (2021). An empirical assessment of practitioners' perspectives on security

tool integration into DevOps. Proceedings of the 15th ACM / IEEE International Symposium on Empirical

Software Engineering and Measurement, 1–12. https://doi.org/10.1145/3475716.3475776

https://doi.org/10.1088/1742-6596/1651/1/012010
https://doi.org/10.1080/00207543.2021.1884311
https://doi.org/10.1007/s41870-021-00789-x
https://doi.org/10.1109/WCNPS53648.2021.9626299
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1007/978-1-4842-6702-8
https://doi.org/10.1007/978-1-4842-6702-8
https://doi.org/10.1109/ACCESS.2021.3053326
https://doi.org/10.3390/iot2040038
https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.6028/NIST.SP.800-192
https://doi.org/10.1016/S1361-3723(19)30064-5
https://doi.org/10.1016/j.cose.2020.101967
https://doi.org/10.1109/QRS51102.2020.00064
https://doi.org/10.1002/spe.2111
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1016/j.infsof.2021.106604
https://doi.org/10.1049/ise2.12002
https://doi.org/10.1145/3475716.3475776

Computer Fraud and Security

ISSN (online): 1873-7056

__
52

Vol: 2022 | Iss: 10 | 2022

29. Rahman, A., & Williams, L. (2019). Security smells in Ansible and Chef scripts: A replication study. ACM

Transactions on Software Engineering and Methodology, 28(4), 1–31. https://doi.org/10.1145/3356614

30. Rahman, A., Xiao, H., Williams, L., & Meneely, A. (2019). A systematic mapping study of infrastructure as code

research. Information and Software Technology, 108, 65–77. https://doi.org/10.1016/j.infsof.2018.11.010

31. Ramos, J. L. H., Bernabe, J. B., & Gomez, A. F. S. (2020). On combining static, dynamic and interactive analysis

security testing tools to improve OWASP Top Ten security vulnerability detection in web applications. Applied

Sciences, 10(24), 9119. https://doi.org/10.3390/app10249119

32. Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture (NIST Special Publication 800-

207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207

33. Sandhu, R. (2021). The PEI models for zero trust administration. IEEE Security & Privacy, 19(3), 10–13.

https://doi.org/10.1109/MSEC.2021.3065682

34. Shore, M., Zeadally, S., & Kisekka, V. (2021). Zero-trust: A comprehensive survey of security principles and

network architectures. International Journal of Information Security, 20, 1–19. https://doi.org/10.1007/s10207-

021-00567-4

35. Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware

trojans. Journal of Sensor and Actuator Networks, 8(3), 42. https://doi.org/10.3390/jsan8030042

36. Syed, N. F., Shah, S. W., Shaghaghi, A., Anwar, A., Baig, Z., & Doss, R. (2021). DistriTrust: Distributed and low-

latency access validation in zero-trust architecture. Journal of Information Security and Applications, 63, 103023.

https://doi.org/10.1016/j.jisa.2021.103023

37. Teerakanok, S., & Uehara, T. (2021). Migrating to zero trust architecture: Reviews and challenges. Security and

Communication Networks, 2021, 9947347. https://doi.org/10.1155/2021/9947347

38. Turner, H., White, J., Kpodjedo, S., & Srivastava, A. (2018). Security of smart manufacturing systems. Journal of

Manufacturing Systems, 47, 93–99. https://doi.org/10.1016/j.jmsy.2018.04.007

39. Ullah, F., Ahmad, W., Azeem, M., & Akbar, M. A. (2017). Security support in continuous deployment pipeline.

Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2017),

355–362. https://doi.org/10.5220/0006318203550362

40. Viana, T., & Tyler, D. (2021). Trust no one? A framework for assisting healthcare organisations in transitioning to

a zero-trust network architecture. Applied Sciences, 11(16), 7499. https://doi.org/10.3390/app11167499

41. Ward, D., & Beynon, M. (2021). Integrating zero trust and DevSecOps. Software Engineering Institute, Carnegie

Mellon University. https://doi.org/10.1184/R1/14605179.v1

42. Yan, B., Chen, J., & Zhang, J. (2012). A threat model-driven security testing approach for web applications.

Information Security and Cryptology, 168–181. https://doi.org/10.1007/978-3-642-34447-3_14

43. Yao, Q., Wang, Q., Zhang, X., & Fei, J. (2020). Dynamic access control and authorization system based on zero-

trust architecture. Proceedings of the 2020 International Conference on Control, Robotics and Intelligent System,

123–127. https://doi.org/10.1145/3437802.3437824

44. Yun, J., Goh, Y., & Chung, J. M. (2021). Hardware-assisted security monitoring unit for real-time ensuring secure

instruction execution and data processing in embedded systems. Micromachines, 12(12), 1450.

https://doi.org/10.3390/mi12121450

45. Zech, P., Felderer, M., & Breu, R. (2012). Towards a model-based security testing framework: A systematic

review. Proceedings of the 2012 International Conference on Software Security and Reliability (SERE), 76–85.

https://doi.org/10.1109/SERE.2012.30

46. Zhang, H., Rimba, P., & Tran, A. B. (2020). Continuous security assessment in DevOps pipelines: A systematic

mapping study. ACM Computing Surveys, 53(3), 1–36. https://doi.org/10.1145/3381034

47. Zou, D., Jin, H., & Li, W. (2021). Security testing for cloud-native applications: Challenges and future directions.

Journal of Systems and Software, 177, 110941. https://doi.org/10.1016/j.jss.2021.110941

48. Zulkernine, M., & Ahamed, S. I. (2021). Automatic vulnerability detection in embedded devices and firmware:

Survey and layered taxonomies. ACM Computing Surveys, 54(2), 25. https://doi.org/10.1145/3432893

https://doi.org/10.1145/3356614
https://doi.org/10.1016/j.infsof.2018.11.010
https://doi.org/10.3390/app10249119
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/MSEC.2021.3065682
https://doi.org/10.1007/s10207-021-00567-4
https://doi.org/10.1007/s10207-021-00567-4
https://doi.org/10.3390/jsan8030042
https://doi.org/10.1016/j.jisa.2021.103023
https://doi.org/10.1155/2021/9947347
https://doi.org/10.1016/j.jmsy.2018.04.007
https://doi.org/10.5220/0006318203550362
https://doi.org/10.3390/app11167499
https://doi.org/10.1184/R1/14605179.v1
https://doi.org/10.1007/978-3-642-34447-3_14
https://doi.org/10.1145/3437802.3437824
https://doi.org/10.3390/mi12121450
https://doi.org/10.1109/SERE.2012.30
https://doi.org/10.1145/3381034
https://doi.org/10.1016/j.jss.2021.110941
https://doi.org/10.1145/3432893

