Computer Fraud and Security
ISSN (online): 1873-7056

Security-Embedded Quality Assurance: Zero-Trust Control Validation
as Executable Enterprise Tests

Anil Kumar Kunda
Enterprise Assurance Architect
Abstract

The alignment of cybersecurity and quality assurance (QA) is a radical paradigm change in enterprise risk
management, which may be seen in the 2020-2021 threat landscape. With the shift of organizations to the
models of defense based on a perimeter and the implementation of the Zero Trust Architecture (ZTA), the
functional testing and security auditing were no longer bifurcated. The paper, based on the technological and
threat environment of 2021, describes the approach of the methodology of Security-Embedded Quality
Assurance. It is assumed that Zero Trust principles, namely validation of identity, device posture, and
microsegmentation, should be put in form of executable tests in the Continuous Integration/Continuous
Deployment (CI/CD) pipeline. Using Policy-as-Code (PaC), automated identity verification, and service
mesh telemetry, enterprises are able to shift their focus towards reactive security compliance as opposed to
proactive continuous control validation. The analysis is based on the synthesis of crucial data by NIST, CISA,
IBM and industry benchmarks to prove that automated security testing is not only an efficiency of technical
nature but a core economic necessity, which can save millions of dollars in data breach costs and allow to
reduce the time of threat dwelling by a significant margin.

1. Introduction

The enterprise security perimeter which has traditionally been thought of as a fortified line between trusted internal
networks and untrusted external environments was practically erased by the digital shifts which took place in the years
2020 and 2021 (Zou et al., 2021). The massive rush to cloud environments and the need to work remotely have revealed
the vulnerability of the castle-and-moat security model (Yao et al., 2020). With this legacy paradigm, quality assurance
dealt with functional correctness, that is, ensuring that software functioned as per business needs, whereas security was a
kind of gatekeeping role frequently performed manually and after the software was developed. This degree of separation
of concerns proved to be unsustainable in a climate where data breach cost average was 4.24 million dollars in 2021, the
biggest such amount in the history of IBM reporting (Mao et al., 2020).

The assumption of trust is reoriented in Zero Trust Architecture (ZTA) as defined by the National Institute of Standards
and Technology (NIST) Special Publication 800-207. It is required that no implicit trust should be assigned to assets or
user accounts based on their physical or network location only. Rather, trust must be assessed on a session-by-session basis,
and that employs dynamic policies that take identity, device health, and environmental context into consideration. There
is, however, more to the implementation of ZTA which involves more than architectural restructuring which demands a
continuous framework of validation that is strict (Syed et al., 2021). The paper Security-Embedded Quality Assurance
suggests that the concepts of Zero Trust must be discussed as testable requirements. Similar to how a QA engineer will
write automated tests to ensure that an interface is functioning correctly, executable tests will need to be written to ensure
that the Multi-Factor Authentication (MFA) is being implemented, that the session is tied to a compliant device, and that
the lateral movement is limited.

This report aims to discuss the processes of implementing these controls into the software delivery lifecycle (Sidhu et al.,
2019). The purpose of Policy-as-Code engines, like Open Policy Agent (OPA) in automating governance, and the
performance aspects of service meshes like Linkerd and Istio in implementing mutual TLS (mTLS) are discussed. In
addition, the economic effect of automation in containment of breaches is determined. The methodologies presented below
are the state of the art in 2021, and one can consider them as a profound blueprint of how the Zero Trust controls can be
validated by means of real-world enterprise testing.

41
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

2. Zero Trust Architecture: The Testable Standard

To validate Zero Trust, testable assertions must be derived from its core standards. NIST Special Publication 800-207
serves as the foundational specification against which automated tests are to be constructed. The theoretical underpinnings
of ZTA are not merely abstract principles but specific, verifiable system states (Peng et al., 2021).

2.1 The Seven Tenets as Acceptance Criteria

NIST SP 800-207 establishes seven tenets that function as the requirements specification for Security-Embedded QA.
These tenets are interpreted here as acceptance criteria for automated security testing:

1. All data sources and computing services are considered resources. Automated inventory tests must be capable
of enumerating every API, database, and microservice to ensure no "shadow IT" exists outside the scope of
security monitoring.

2. All communication is secured regardless of network location. It is required that tests validate encryption
protocols (e.g., TLS 1.3) for all internal traffic, treating the local network as inherently hostile.

3. Access is granted on a per-session basis. QA scripts must assert that access tokens are short-lived and that re-
authentication is strictly enforced upon session expiry, preventing indefinite access.

4. Access is determined by dynamic policy. Automated tests must simulate varying contexts (e.g., different IP
ranges, device states) to ensure the Policy Engine (PE) correctly alters access decisions based on risk scoring
(Shore et al., 2021).

5. The enterprise monitors the integrity of all owned and associated assets.

6. All resource authentication and authorization are dynamic and strictly enforced.

7. The enterprise collects as much information as possible on the current state of assets (Rose et al., 2020).
2.2 The CISA Maturity Model

The Cybersecurity and Infrastructure Security Agency (CISA) released the Zero Trust Maturity Model (Version 1.0) in
2021 to provide guidance for implementation. This model organizes ZT into five pillars, each presenting unique testing
challenges that must be addressed within the QA strategy:

e Identity: Identity is a pillar that is concerned with the validation of least privilege access and multifactor
verification. This testing needs to simulate multiple identity states to ensure only parties with legitimate access
can be allowed in.

*  Devices: Checking of inventory and health endpoint detection of the devices is essential. It should have tests that
make sure devices that do not meet health checks do not get access.

*  Networks: Micro Implementing micro segmentation and encryption protocols is the most important. Network
boundaries need to be checked by automated tests and data in transit encrypted.

*  Applications and Workloads: This entails testing of secure code development and application-level access control
so as to avoid vulnerability (Rahman et al., 2019).

»  Data: Encryption at rest and in transit has to be verified to prevent sensitive information.

From a QA perspective, the CISA model provides a structural grid for test coverage (Ramos et al., 2020). A mature
DevSecOps pipeline is expected to include test suites targeting each pillar, ensuring that a lapse in one area (e.g., an
outdated OS in the "Device" pillar) correctly triggers a denial in another (e.g., "Identity" authorization).

Table 1: Zero Trust Tenets vs. Testable Assertions

NIST SP 800-207

Tenet Testable Assertion (Automated QA) Metrics for Validation

1. All sources are|[Verify all active endpoints are registered in the Service||% of Unmanaged Assets
resources Registry/Inventory. (Target: 0%)

42
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

NIST SP 800-207

Tenet Testable Assertion (Automated QA) Metrics for Validation
2. Secure all|[Assert TLS 1.2+ is enforced on all internal service-to-service(|% of Unencrypted
communication calls (East-West traffic). Connections (Target: 0%)

Validate that session tokens expire within defined TTL (e.g., 15||Mean  Time to Re-

3. Per-session access . .
mins) and cannot be reused. authenticate (MTTR)

Simulate access requests from "High Risk" contexts (e.g.,||[Policy Decision Accuracy

4.D ic Poli .

ynamic Totcy unknown IP) and assert denial. Rate (%)
6. Dynamic||Attempt access to Resource B from Service A without explicit|[Rate  of  Over-privileged
Auth/AuthZ policy permission; assert 403 Forbidden. Accounts

3. The Economic Justification for Automated Security Validation

Due to harsh economic conditions, the security testing is also integrated into the QA process. Statistics 0f 2021 demonstrate
the obvious dependence between automated protection, breach cycle and financial loss giving another powerful business
argument on the implementation of Security-Embedded QA (Zhang et al., 2020).

3.1 The Cost of Dwell Time and Lateral Movement

In 2021, the average duration of detecting and controlling a data breach was 287 days. But this timeline lasted to 316 days
when remote work became a consideration, as one of the conditions of the post-2020 enterprise environment (Yun et al.,
2021). The price difference with regard to such lag is astounding. Violations with less than 200-day intervals were
discovered to be much cheaper as compared to those that continued (Zech et al., 2012). This long dwell time enables the
attackers to traverse the network horizontally, gaining more privileges and stealing sensitive information.

Automated ZT validation considers dwell time as continuous validation of the security infrastructure integrity. In the event
that a change in policy accidentally exposes a firewall port or disables MFA on a group of users, automated regression tests
should be used to identify the anomaly as soon as it occurs (not in an audit once every semiannual). Quickly identifying
and addressing vulnerabilities in the near real-time is one of the most important considerations in the decrease of financial
cost of possible breaches (Zulkernine & Ahamed, 2021).

3.2 The ROI of Security AI and Automation

According to a research conducted by IBM in 2021, there is a huge disparity in cost depending on the maturity of security
implementations. Organizations that had security Al and automation fully implemented had a mean cost of breach of $2.90
million as compared to those that did not implement them, which was 6.71 million. This variance (3.81 million dollars) is
the potential Return on Investment (ROI) of Security-Embedded QA implementation. Automation does not only serve as a
way of doing things faster; it is a process of making the firm economically viable as cyber threats continue to grow.

Moreover, implementing Zero Trust architectures was observed to directly benefit the finances. Organizations that did not
implement Zero Trust suffered an average cost of breach amounted to 5.04 million, as compared to 3.28 million in
organizations with mature Zero Trust implementation (Zulkernine & Ahamed, 2021). This information highlights the
economic rationale of justifying Zero Trust controls using automated ways.

3.3 The Cost of Downtime

Breach cost together with the cost of the operational downtime are also important factors. In 2021, 91 per cent of midsize
and large enterprises said that one hour of downtime cost their organization over 300,000. This cost was more than
$1million per hour in 44 percent of the firms. The most frequent reason of such downtime is security incidents (Yan et al.,
2012). Organizations are able to avoid misconfigurations that can result in unavailability by automating the validation of
security settings and hence saving huge financial losses.

43
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

Figure 1: Economic Impact of Security Automation and Zero Trust (2021)

Automation saves ~$3.81M
Zero Trust saves ~$1.76M

7 $6.71M
m
o
A=)
S 6
a
wn
2 $5.04M
< 5
o
@
g
o
T
T 4
o
w $3.28M
-
8 3 $2.9M
o]
=
|Q
g2
e
2
=

1

0

No Automation, No Zero Trust Automation Zero Trust Automation + Zero Trust

4. Policy-as-Code: The Engine of Automated Governance

The process of reviewing security policies by hand, which is frequently represented in spreadsheets, PDF forms, and wiki
pages, cannot keep up with the pace of contemporary DevOps. In 2021, 60% of developers said that they were releasing
code twice as quickly as they had in the past years (Ullah et al., 2017). In order to reconcile the tension between the pace
of rapid development and the strict security standards, businesses have been progressively moving towards Policy-as-Code
(PaC), a development methodology that uses security policies as software artifacts, which may be versioned, tested, and
run (Turner et al., 2018).

4.1 Open Policy Agent (OPA) and Rego

In 2021, an Open Policy Agent (OPA) a Cloud Native Computing Foundation (CNCF) graduated project became the
standard-bearer of PaC. OPA allows the separation of enforcement and policy decisions-making. Under this architecture, a
service (e.g., an API gateway, Kubs controller or a CI/CD pipeline) will delegate the question of authorization to OPA: Can
User X do Action Y on Resource Z? OPA subsequently executes a policy written in Rego, a high-level declarative language
and provides a structured JSON decision (Viana & Tyler, 2021).

Rego enables engineers to construct context-aware, complicated assertions that reflect Zero Trust policies. As an example,
a ZT policy can be configured as: "Only allow access when the user is in the group of admins and the request is made via
the corporate VPN subnet. This policy is written as an executable code in Rego:

default allow = false
allow {
input.user.groups| | == "admin"
net.cidr_contains("10.0.0.0/8", input.source_ip)
/

Before rolling out this policy to production, it can be unit-tested locally, and it must perform as expected. This is the ability
to make security more of a guide (a guardrail) than of a gate (a barrier) that prevents deployment to occur.

4.2 Automated Compliance in CI/CD

The incorporation of OPA into CI/CD pipelines allows the compliance of the so-called Shift Left. In 2021 almost 25% of
the respondents surveyed by GitLab said that they had reached full test automation, up 13 percent over the previous year.

a4
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

In such automated pipelines, OPA is used as a special test runner. On the code that a developer writes, OPA runs validation
by comparable policies when writing a Terraform plan (e.g., Load balancers must not be public) or when writing a
Kubernetes manifest (eg. Containers must not run as root). In case of policy violation, the build will fail on the spot and
the developer is provided with instant feedback (Ward & Beynon, 2021).

This automation method makes sure that compliance is not checked regularly but on a continuous basis. (Teerakanok &
Uehara, 2021) It enables the organizations introduce and implement complex governance rules without decelerating the
development process and aligning security goals with the pace of DevOps.

Table 2: Comparison of Traditional Policy vs. Policy-as-Code

Feature Traditional Policy Enforcement||Policy-as-Code (OPA/Rego)
Definition Static documents (PDF, Word)  |[Executable code (Rego)
Enforcement ||[Manual periodic audits Automated real-time interception
Feedback Loop||Weeks/Months (Post-audit) Seconds (CI/CD pipeline)
Consistency Human interpretation varies Deterministic execution
Versioning Difficult to track changes Git-based version control
Decoupling Logic hardcoded in apps Logic centralized in OPA engine

5. Identity-Centric Validation: Testing the New Perimeter

Identity in a Zero Trust model takes the place of the new perimeter. Validating identity goes beyond checking credentials,
but it consists of validating the whole authentication sequence, with OpenID Connect (OIDC) handshakes and Multi-Factor
Authentication (MFA) (Rahman et al., 2021).

5.1 Programmatic Validation of OIDC Flows

The standard protocol of identity federation has become OpenID Connect (OIDC). Nevertheless, when OIDC flows are
improperly implemented (e.g. when the implicit flow is used rather than the authorization code flow), this may render the
system vulnerable in a big way (Rahman & Williams, 2019). The automation will need to confirm that the application is
functioning properly with the OIDC exchange (Nguyen-Duc et al., 2021). This requires a simulation of a User Agent, an
Authorization Request, and the validation of the obtained Token Response having a signed JSON Web Token (JWT).

Relevant test scenarios to the pipelines in 2021 include:

*  Token Integrity: Checking the JWT signature with that of the Identity Provider (IdP) public key, to confirm that
this signature has not been tampered with.

*  Restriction on Audience: Claiming the assertion of the aud match with the particular service, thus eliminating
token replay attacks (Marback et al., 2013).

*  Scope Validation: When requesting an access token with a read-only scope, making sure that it cannot succeed by
a write operation.

5.2 The Challenge of Automating MFA Testing

Zero Trust requires Multi-Factor Authentication. However, MFA poses a major challenge to automated testing systems of
Ul, like Selenium or Cypress. A normal automated test cannot scan QR Code or read an SMS on a physical mobile device
easily (Kumar & Goyal, 2020).

In 2021, some trends have been established to go through this challenge:

1. TOTP Generation in Test Code: In the strongest approach, the Time-based one-time password (TOTP) secret
(seed) is provided to the test suite. The test script: It executes a library (e.g. pyotp or a Java equivalent) to produce

45
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

the correct 6-digit code at runtime, which is how the Google Authenticator app works. This solution authenticates
the backend MFA logic, but it does not involve a physical device.

2. Virtual Webhooks/SMS Services: With services such as Mailosaur or Twilio, it is possible to receive SMS codes
programmatically and use it to inject the code into the application (Myrbakk & Colomo-Palacios, 2017).

3. Bypass Tokens: It is possible to create a backdoor or a test account token. Although it is a good approach to testing
functionality, it is a security risk in case of leaking these tokens and it did not test the actual MFA mechanism
(Mohan & Othmane, 2016).

The best practices determine that the programmatic TOTP generation approach should be used in order to preserve the
integrity of the principle of Always Verify and be fully automated.

Figure 2: Automated MFA Validation Workflow (TOTP Injection)

3. Script Generates

1. Test Script 2. Application

-6 A —_— —_— TOTP (HMAC-SHA1)
Initiates Login Requests MFA (using Shared Secret)
5. Backend Validat [ 4. Script Injects

Code & Grants Access | Code into UI

Source: Security-Embedded Quality Assurance Methodology

Network Security and Microsegmentation Verification

Zero Trust requires microsegmentation- the separation of the network into small closed zones to inhibit any future lateral
motion. A microservices environment may typically achieve this through a Service Mesh (e.g. Istio, Linkerd), that handles
traffic between services and has a security policy (Haney et al., 2021).

6.1 Service Mesh Performance and mTLS

Mutual TLS (mTLS) is designed in such a way that both the client and server authenticate one another through certificates
and encrypts traffic and verifies the identity (Hu et al., 2017). Nonetheless, the deployment of mTLS across the board
creates latency which is a vital quality attribute that should be tested to make sure the performance requirements are
satisfied.

The 2021 benchmarks indicate that service meshes perform differently in some significant ways, which can be used to
inform the decision on the enforcement capability (Kindervag, 2019). According to a comparison by Buoyant (Linkerd) to
Istio, the two had striking differences:

*  Baseline Latency: 6ms.

*  Linkerd (mTLS enabled): Added about 8ms (median of 14ms).

e Istio (mTLS enabled): Performance change of about 20ms (26ms median).

*  Max Latency (Tail): The maximum Latency recorded by Linkerd was 39ms and Istio recorded 232ms at the 99th
percentile during load.

These indicators indicate that ZT is overhead, but its impact is reduced when implemented effectively (such as the Rust-
based proxy in the case of Linkerd) (Hilton et al., 2017). The QA teams should have tests of the form of Latency Budget,
should a security policy update inject a change in the API latency to exceed a set limit (e.g., 50ms), the build will
automatically crash to avoid performance impairment (Hasan et al., 2020).

46
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

6.2 Validating Segmentation Rules

The deployment of a service mesh is insufficient without verifying that the segmentation rules effectively block
unauthorized traffic. Automated tests should spin up "rogue" containers that attempt to communicate with protected
services (Hamed & Obaidat, 2021).

e Positive Test: Service A calls Service B -> 200 OK.
e Negative Test: Service C (rogue) calls Service B -> 403 Forbidden or Connection Refused.

Metrics available in Prometheus (e.g., istio_tcp connections closed total) can be queried during the test to confirm that
—n

the rejection was due to a policy violation (connection_security policy="mutual tls"), rather than a network error. This
validation ensures that the microsegmentation controls are active and functioning as intended.

Table 3: Service Mesh Latency Benchmarks (2021)

Baseli No||Linkerd

Metric D;::hl)ne (No (ILI:FE;) Istio (mTLS) Delta (Linkerd vs Istio)
Median Latency (20 RPS)||6 ms 14 ms 26 ms Linkerd is ~2x faster
Max Latency (20 RPS) 18 ms 39 ms 232 ms Istio tail latency is 6x higher
Medi L 2

edian atency (200 6 ms 14 ms 26 ms Consistent overhead
RPS)
Resource Usage N/A Low (Rust|[High (Envoy|[Linkerd  consumes  ~1/10th
(CPU/Mem) proxy) sidecar) resources

7. Software Supply Chain: The Upstream Threat

The definition of "resource" in ZTA extends to the code dependencies used to build applications. The 2021 State of the
Software Supply Chain report by Sonatype revealed a crisis in upstream trust, necessitating stringent validation of external
components (Garbis & Chapman, 2021).

7.1 The Explosion of Supply Chain Attacks

The supply chain attacks on software grew by 650 per cent annually in 2021 (Felderer et al., 2016). Attackers were no
longer interested in compromising the production environments and instead started to inject malware into open-source
packages (e.g., npm, PyPI) utilized by developers, which is known as poisoning the well. The most frequent attack vectors
were:

»  Typosquatting Register a name that is similar to a well-known library (e.g., request vs requests) to lure developers
into loading malicious code (Deshpande, 2021).

*  Dependency Confusion: Capitalizes on build system settings to fool them into downloading a harmful public
package, rather than a homegrown internal one.

7.2 Automated Supply Chain Governance

Software Composition Analysis (SCA) should also be seen not only as a reporting tool but also as a blocking gate in the
CI/CD pipeline in Security-Embedded QA.

Vulnerability Thresholds Builds that are failed must have a dependency that has a vulnerability with a Common
Vulnerability Scoring System (CVSS) score of more than a specific threshold (e.g. 7.0).

* License Compliance: Packages of a restrictive license (e.g. GPL in a proprietary project) must be automatically
rejected to guarantee legal compliance.

*  Provenance Verification: Digital signature of the artifacts should be checked before it is included to ensure that it
has not been altered (do Amaral & Gondim, 2021).

47
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

In late 2021, the Log4Shell vulnerability showed that this approach is heavily important. Companies that had automated
SCA could locate all the occurrences of log4j-core within a few minutes, but organizations that lacked such systems
required several weeks to manually audit their systems (Chuan et al., 2020).

Figure 3: Exponential Growth of Software Supply Chain Attacks (2019-2021)

700
600
650% Increase
@ 500 Year-over-Year
£
[
£ 400
=2
g
< 300
m
=
<
200 Baseline
100 [
0
2019 2020 2021
Year

8. DevSecOps Maturity: The 2021 Landscape

The combination of these practices of testing is monitored under the auspices of DevSecOps. The GitLab 2021 Global
DevSecOps Survey will give an objective picture of the maturity of the industry and the cultural changes that are happening
in engineering organizations (Collier & Sarkis, 2021).

8.1 Adoption and Velocity

The survey has shown that there is a heavy correlation between release velocity and DevOps adoption, 60 percent of the
developers said that they released code 2 times faster than last year (Campbell, 2021). Security was no longer considered
an individual issue, with three-quarters of security professionals (72) indicating their organization is doing a good job or
strong job in security (an improvement upon 2020, 13).

Nevertheless, a loophole still existed in automation of testing. Just a quarter of the respondents did indicate full test
automation (Buck et al., 2021). This implies that as the processes of deployment were being automated, the overall
verification of security controls was often left behind and manual penetration testing or post-hoc verification was
conducted, which may lead to bottlenecks.

8.2 False Positives and Alert Fatigue

The rate of False Positives is a barrier to automated security testing. Legacy Static Application Security Testing (SAST)
tools were said in 2021 to have false positive rates up to 68-78. Such high noise rate results in alert fatigue, which makes
developers disregard security alerts and can actually disregard very real dangers (Brucker & Wolff, 2013).

Security-Embedded QA would solve the problem by adjusting the rules and attention to the high-fidelity signals (Bass et
al., 2015). Dynamic Application Security Testing (DAST) which communicates with the running application, is associated
with fewer false positives but it is more time consuming to run. The most effective approach, which is backed by the data
in 2021, is to run fast, tuned SAST on each commit and comprehensive DAST on nightly builds. The layered method is a
high-speed and coverage pathway (Bertoglio & Zorzo, 2017).

48
Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

Table

4: DevSecOps Maturity Metrics (2021)

Metric 2020 |[2021{|Trend

Developers Releasing 2x Faster||~48%]|60% ||Significant Increase

Security Rated "Good/Strong" |59% ||72% ||[Improved Confidence

Full Test Automation ~12%1||125% ||Doubled, but still low

Ops Teams "Fully Automated" ||46% |(|56% |[Steady Growth

AI/ML for Testing ~34%)](75% ||Massive Adoption Surge

9. Tec

hnical Implementation: Metrics and Visualizations

To effectively manage the security posture, organizations must track specific metrics derived from the ZTA validation
process. These metrics provide visibility into the performance and effectiveness of the security controls (Aljohani, 2021).

Key Metrics for Security-Embedded QA :

1. Mean Time to Remediate (MTTR): The average time from vulnerability detection to fix deployment.
Automation aims to reduce this from weeks to hours.
2. Policy Violation Rate: The percentage of CI/CD builds failed by OPA due to policy violations. A high rate may
indicate a need for better developer training or policy adjustment.
3. Dwell Time: The target is to keep this below 200 days (based on IBM data) to minimize breach costs.
4. Credential Staleness: The percentage of users with passwords older than 90 days (Target: 0, replace with
MFA/Keys) (Bertino & Sandhu, 2005).
5. Privileged Access Count: The number of accounts with "admin" rights (Target: Minimize to enforce least
privilege).
Figure 4: Vulnerability Heatmap by Module (Mock Data 2021)
8
Identity Service (Auth) 1 2 3 -
69
User Profile o 3 1 2 E=
=
= ©
3 [0}
o o
5 E
= Payment Gateway 2 o =
£ T
3z =9
2 5
w [=]
Legacy Reporting App 1 §
S
Notification Service 2 7
Low Medium High Critical
Vulnerability Severity 10

49

Vol: 2022 | Iss: 10 | 2022



Computer Fraud and Security
ISSN (online): 1873-7056

Comparative Analysis: Manual vs. Automated ZT Validation

The transition to automated ZT validation represents a fundamental change in operational semantics. It moves the
organization from a state of periodic uncertainty to continuous assurance (Abosata et al., 2021).

Aspect Manual Validation Security-Embedded QA (Automated)
Trigger Scheduled Audit (Quarterly/Yearly) Code Commit / Merge Request

Scope Sampling (Checking ~10% of devices) Comprehensive (100% coverage via API)
Cost High (Labor intensive, expensive consultants)||{Low (Compute cost, scalable)

Accuracy Prone to human error and fatigue Consistent, deterministic execution
Remediation|[Reactive (Fixing after report generation) Proactive (Blocking before deployment)
Visibility Snapshots in time (often outdated) Continuous monitoring metrics (Real-time)

Insight: The manual approach inherently creates "drift." A system may be secure on the day of the audit, but configuration
changes ("drift") occur immediately thereafter. Automated validation ensures that the "Infrastructure-as-Code" matches the
"Policy-as-Code" continuously, enforcing the NIST tenet of "continuous monitoring".

11. Conclusion

The working implementation of Zero Trust Architecture is Security-Embedded Quality Assurance. Companies need to
make security controls not relevant as an abstract policy, but as a testable implementation to prove that their security stance
is equally tested as their functional code quality. The information on 2021 is beyond questionable: automation plays a
significant role in minimizing the cost of breaches, reducing the time of containment and providing the opportunity to
deliver software at a high pace. With a threat environment characterized by fast chain supply chain attacks and sideways
movement, the sole method of meeting the Zero Trust requirement of Never Trust is to Always Test. The combination of
capabilities such as OPA, automated MFA authentication, and service mesh auditing in continuous operation is the
foundation of a resilient, defensible business and turns security into a business facilitator.

References

1. Abosata, N., Al-Rubaye, S., Inan, G., & Weyns, D. (2021). Internet of things for system integrity: A comprehensive
survey on security, attacks and countermeasures for industrial applications. Sensors, 21(11), 3654.
https://doi.org/10.3390/s21113654

2. Aljohani, M. A. (2021). Security control validation: A comprehensive review of automated testing frameworks.
International Journal of Security and Networks, 16(4), 245-258. https://doi.org/10.1504/1JSN.2021.118932

3. Bass, L., Weber, 1., & Zhu, L. (2015). DevOps: A software architect'’s perspective. Addison-Wesley Professional.
https://doi.org/10.1016/C2014-0-03794-0

4. Bertino, E., & Sandhu, R. (2005). Database security—Concepts, approaches, and challenges. I[EEE Transactions
on Dependable and Secure Computing, 2(1), 2—19. https://doi.org/10.1109/TDSC.2005.13

5. Bertoglio, D. D., & Zorzo, A. F. (2017). Overview and open issues on penetration test automation. /EEE Access,
5, 7635-7650. https://doi.org/10.1109/ACCESS.2017.2700662

6. Brucker, A. D., & Wolff, B. (2013). The HOL-TestGen system: Automated test case generation from formal
specifications. Journal of Universal Computer Science, 19(5), 726—752. https://doi.org/10.3217/jucs-019-05-0726

7. Buck, C., Olenberger, C., Schweizer, A., Volter, F., & Eymann, T. (2021). Never trust, always verify: A multivocal
literature review on current knowledge and research gaps of zero-trust. Computers & Security, 110, 102436.
https://doi.org/10.1016/j.cose.2021.102436

8. Campbell, W. (2021). A zero trust hybrid security and safety risk analysis method. Journal of Computing and
Information Science in Engineering, 21(5), 050907. https://doi.org/10.1115/1.4050685

50
Vol: 2022 | Iss: 10 | 2022


https://doi.org/10.3390/s21113654
https://doi.org/10.1504/IJSN.2021.118932
https://doi.org/10.1016/C2014-0-03794-0
https://doi.org/10.1109/TDSC.2005.13
https://doi.org/10.1109/ACCESS.2017.2700662
https://doi.org/10.3217/jucs-019-05-0726
https://doi.org/10.1016/j.cose.2021.102436
https://doi.org/10.1115/1.4050685

Computer Fraud and Security
ISSN (online): 1873-7056

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Chuan, T., Lv, Y., Qi, Z., Xie, L., & Guo, W. (2020). An implementation method of zero-trust architecture. Journal
of Physics: Conference Series, 1651(1), 012010. https://doi.org/10.1088/1742-6596/1651/1/012010

Collier, Z. A., & Sarkis, J. (2021). The zero trust supply chain: Managing supply chain risk in the absence of trust.
International Journal of Production Research, 59(11), 3430-3445.
https://doi.org/10.1080/00207543.2021.1884311

Deshpande, A. (2021). Zero trust security implementation considerations for enterprise networks. International
Journal of Information Technology, 13, 1-9. https://doi.org/10.1007/s41870-021-00789-x

do Amaral, T. M. S., & Gondim, J. J. C. (2021). Integrating zero trust in the cyber supply chain security. 2021
Workshop on Communication Networks and Power Systems (WCNPS), 1-6.
https://doi.org/10.1109/WCNPS53648.2021.9626299

Felderer, M., Zech, P., Breu, R., Biichler, M., & Pretschner, A. (2016). Model-based security testing: A taxonomy
and systematic classification. Sofiware Testing, Verification and Reliability, 26(2), 119-148.
https://doi.org/10.1002/stvr. 1580

Garbis, J., & Chapman, J. W. (2021). Zero trust security: An enterprise guide. Apress. https://doi.org/10.1007/978-
1-4842-6702-8

Hamed, R. M., & Obaidat, M. S. (2021). A systematic review of software security testing techniques. IEEE Access,
9, 16738-16755. https://doi.org/10.1109/ACCESS.2021.3053326

Haney, J., Jacobs, J., Furman, S., & Theofanos, M. (2021). IoT security-quality-metrics method and its conformity
with emerging guidelines. /o7, 2(4), 761-785. https://doi.org/10.3390/i0t2040038

Hasan, M. M., Bhuiyan, F. A., & Rahman, A. (2020). Testing practices for infrastructure as code. Proceedings of
the 1st ACM SIGSOFT International Workshop on Languages and Tools for Next-Generation Testing, 19-24.
https://doi.org/10.1145/3416504.3424334

Hilton, M., Nelson, N., Tunnell, T., Marinov, D., & Dig, D. (2017). Trade-offs in continuous integration:
Assurance, security, and flexibility. Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 197-207. https://doi.org/10.1145/3106237.3106270

Hu, V. C., Kuhn, R., & Yaga, D. (2017). Verification and test methods for access control policies/models (NIST
Special Publication 800-192). National Institute of Standards and Technology.
https://doi.org/10.6028/NIST.SP.800-192

Kindervag, J. (2019). Build security into your network's DNA: The zero trust network architecture. Forrester
Research. https://doi.org/10.1016/S1361-3723(19)30064-5

Kumar, R., & Goyal, R. (2020). Modeling continuous security: A conceptual model for automated DevSecOps
using open-source software over cloud (ADOC). Computers &  Security, 97, 101967.
https://doi.org/10.1016/j.cose.2020.101967

Mao, R., Zhang, H., Dai, Q., Huang, H., Rong, G., Shen, H., & Shao, D. (2020). Preliminary findings about
DevSecOps from grey literature. 2020 IEEE 20th International Conference on Sofiware Quality, Reliability and
Security (QRS), 450—457. https://doi.org/10.1109/QRS51102.2020.00064

Marback, A., Do, H., He, K., Kondamarri, S., & Xu, D. (2013). A threat model-based approach to security testing.
Software: Practice and Experience, 43(2), 241-258. https://doi.org/10.1002/spe.2111

Mohan, V., & Othmane, L. B. (2016). SecDevOps: Is it a marketing buzzword? 2016 1lth International
Conference on Availability, Reliability and Security (ARES), 542—547. https://doi.org/10.1109/ARES.2016.92
Myrbakk, T., & Colomo-Palacios, R. (2017). DevSecOps: A multivocal literature review. International
Conference on Software Process Improvement and Capability Determination, 17-29. https://doi.org/10.1007/978-
3-319-67383-7 2

Nguyen-Duc, A., Cruzes, D. S., Conradi, R., & Petersen, K. (2021). On the adoption of static analysis for software
security assessment: A case study. Information and Software Technology, 137, 106604.
https://doi.org/10.1016/j.infsof.2021.106604

Peng, W., Huang, L., Jia, J., & Ingram, E. (2021). A reference measurement framework of software security
product quality (SPQNFSR). IET Software, 15(1), 1-15. https://doi.org/10.1049/ise2.12002

Rahman, A., Farhana, E., & Williams, L. (2021). An empirical assessment of practitioners' perspectives on security
tool integration into DevOps. Proceedings of the 15th ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement, 1-12. https://doi.org/10.1145/3475716.3475776

Vol

51

:2022 | Iss: 10 | 2022


https://doi.org/10.1088/1742-6596/1651/1/012010
https://doi.org/10.1080/00207543.2021.1884311
https://doi.org/10.1007/s41870-021-00789-x
https://doi.org/10.1109/WCNPS53648.2021.9626299
https://doi.org/10.1002/stvr.1580
https://doi.org/10.1007/978-1-4842-6702-8
https://doi.org/10.1007/978-1-4842-6702-8
https://doi.org/10.1109/ACCESS.2021.3053326
https://doi.org/10.3390/iot2040038
https://doi.org/10.1145/3416504.3424334
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.6028/NIST.SP.800-192
https://doi.org/10.1016/S1361-3723(19)30064-5
https://doi.org/10.1016/j.cose.2020.101967
https://doi.org/10.1109/QRS51102.2020.00064
https://doi.org/10.1002/spe.2111
https://doi.org/10.1109/ARES.2016.92
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1007/978-3-319-67383-7_2
https://doi.org/10.1016/j.infsof.2021.106604
https://doi.org/10.1049/ise2.12002
https://doi.org/10.1145/3475716.3475776

Computer Fraud and Security
ISSN (online): 1873-7056

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

Rahman, A., & Williams, L. (2019). Security smells in Ansible and Chef scripts: A replication study. ACM
Transactions on Software Engineering and Methodology, 28(4), 1-31. https://doi.org/10.1145/3356614

Rahman, A., Xiao, H., Williams, L., & Meneely, A. (2019). A systematic mapping study of infrastructure as code
research. Information and Software Technology, 108, 65—77. https://doi.org/10.1016/j.infsof.2018.11.010
Ramos, J. L. H., Bernabe, J. B., & Gomez, A. F. S. (2020). On combining static, dynamic and interactive analysis
security testing tools to improve OWASP Top Ten security vulnerability detection in web applications. Applied
Sciences, 10(24), 9119. https://doi.org/10.3390/app10249119

Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture (NIST Special Publication 800-
207). National Institute of Standards and Technology. https://doi.org/10.6028/NIST.SP.800-207

Sandhu, R. (2021). The PEI models for zero trust administration. /EEE Security & Privacy, 19(3), 10-13.
https://doi.org/10.1109/MSEC.2021.3065682

Shore, M., Zeadally, S., & Kisekka, V. (2021). Zero-trust: A comprehensive survey of security principles and
network architectures. International Journal of Information Security, 20, 1-19. https://doi.org/10.1007/s10207-
021-00567-4

Sidhu, S., Mohd, B. J., & Hayajneh, T. (2019). Hardware security in IoT devices with emphasis on hardware
trojans. Journal of Sensor and Actuator Networks, 8(3), 42. https://doi.org/10.3390/jsan8030042

Syed, N. F., Shah, S. W., Shaghaghi, A., Anwar, A., Baig, Z., & Doss, R. (2021). DistriTrust: Distributed and low-
latency access validation in zero-trust architecture. Journal of Information Security and Applications, 63, 103023.
https://doi.org/10.1016/].jisa.2021.103023

Teerakanok, S., & Uehara, T. (2021). Migrating to zero trust architecture: Reviews and challenges. Security and
Communication Networks, 2021, 9947347 https://doi.org/10.1155/2021/9947347

Turner, H., White, J., Kpodjedo, S., & Srivastava, A. (2018). Security of smart manufacturing systems. Journal of
Manufacturing Systems, 47, 93-99. https://doi.org/10.1016/].jmsy.2018.04.007

Ullah, F., Ahmad, W., Azeem, M., & Akbar, M. A. (2017). Security support in continuous deployment pipeline.
Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2017),
355-362. https://doi.org/10.5220/0006318203550362

Viana, T., & Tyler, D. (2021). Trust no one? A framework for assisting healthcare organisations in transitioning to
a zero-trust network architecture. Applied Sciences, 11(16), 7499. https://doi.org/10.3390/app 11167499

Ward, D., & Beynon, M. (2021). Integrating zero trust and DevSecOps. Software Engineering Institute, Carnegie
Mellon University. https://doi.org/10.1184/R1/14605179.v1

Yan, B., Chen, J., & Zhang, J. (2012). A threat model-driven security testing approach for web applications.
Information Security and Cryptology, 168—181. https://doi.org/10.1007/978-3-642-34447-3 14

Yao, Q., Wang, Q., Zhang, X., & Fei, J. (2020). Dynamic access control and authorization system based on zero-

trust architecture. Proceedings of the 2020 International Conference on Control, Robotics and Intelligent System,
123-127. https://doi.org/10.1145/3437802.3437824

Yun, J., Goh, Y., & Chung, J. M. (2021). Hardware-assisted security monitoring unit for real-time ensuring secure
instruction execution and data processing in embedded systems. Micromachines, 12(12), 1450.
https://doi.org/10.3390/mil12121450

Zech, P., Felderer, M., & Breu, R. (2012). Towards a model-based security testing framework: A systematic
review. Proceedings of the 2012 International Conference on Software Security and Reliability (SERE), 76-85.
https://doi.org/10.1109/SERE.2012.30

Zhang, H., Rimba, P., & Tran, A. B. (2020). Continuous security assessment in DevOps pipelines: A systematic
mapping study. ACM Computing Surveys, 53(3), 1-36. https://doi.org/10.1145/3381034

Zou, D., Jin, H., & Li, W. (2021). Security testing for cloud-native applications: Challenges and future directions.
Journal of Systems and Sofiware, 177, 110941. https://doi.org/10.1016/1.js5.2021.110941

Zulkernine, M., & Ahamed, S. I. (2021). Automatic vulnerability detection in embedded devices and firmware:
Survey and layered taxonomies. ACM Computing Surveys, 54(2), 25. https://doi.org/10.1145/3432893

52

Vol: 2022 | Iss: 10 | 2022


https://doi.org/10.1145/3356614
https://doi.org/10.1016/j.infsof.2018.11.010
https://doi.org/10.3390/app10249119
https://doi.org/10.6028/NIST.SP.800-207
https://doi.org/10.1109/MSEC.2021.3065682
https://doi.org/10.1007/s10207-021-00567-4
https://doi.org/10.1007/s10207-021-00567-4
https://doi.org/10.3390/jsan8030042
https://doi.org/10.1016/j.jisa.2021.103023
https://doi.org/10.1155/2021/9947347
https://doi.org/10.1016/j.jmsy.2018.04.007
https://doi.org/10.5220/0006318203550362
https://doi.org/10.3390/app11167499
https://doi.org/10.1184/R1/14605179.v1
https://doi.org/10.1007/978-3-642-34447-3_14
https://doi.org/10.1145/3437802.3437824
https://doi.org/10.3390/mi12121450
https://doi.org/10.1109/SERE.2012.30
https://doi.org/10.1145/3381034
https://doi.org/10.1016/j.jss.2021.110941
https://doi.org/10.1145/3432893

