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Abstract 

Software-Defined Networking (SDN) has radically redefined the network architecture of the XXI century 

by decoupling the control plane and the data plane, allowing unprecedented centralization, control, and 

automation. This technical article explores two foundational building blocks that underlie modern SDN 

deployments: virtual switches and network overlays. Virtual switches are software-defined Layer 2 devices 

deployed inside hypervisors, which deliver connectivity to virtualized workloads and have programmable 

forwarding tables that are responsive to centralized controllers. Multi-tenancy Network overlay 

technologies, such as VXLAN and GENEVE, address multi-tenancy issues by applying an encapsulation 

of Ethernet frames into IP packets to form logical network topologies that have no physical boundaries. A 

combination of these technologies provides a highly scalable architecture in which thousands of isolated 

virtual networks may co-exist on the shared physical infrastructure. It discusses the internal layouts of 

these components and how they integrate with each other, and design principles are employed that 

facilitate cloud-scale deployments. Through analysis of the interaction between distributed elements of 

forwarding and centralized control, the article gives network engineers the necessary information to design 

and operate modern cloud infrastructure. 

Keywords: Network Virtualization, Software-Defined Networking, Overlay Networks, Virtual Switches, 
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1. Introduction 

In the cloud-enabled infrastructure era, SDN has transformed network design, deployment, and management. Through 

separating the control plane from the data plane, SDN supports centralized network control and policy compliance that 

cannot be achieved by traditional networking methods. This technical article examines two pivotal building blocks 

central to current SDN solutions: virtual switches and network overlays. 

The emergence of SDN represents one of the most significant architectural shifts in networking over the past decade. 

According to the Open Networking Foundation, this paradigm fundamentally changes network architecture by creating a 

logical separation between network control functions and forwarding operations, making networks more dynamic, 

manageable, and adaptable to the high-bandwidth requirements of modern applications [1]. Overlays and virtual switches 

are now the foundation technologies facilitating such a shift, offering the flexibility and scale necessary to cloud 

environments, yet still maintaining compatibility with existing infrastructure. 

Virtual switches serve as the main network interface to virtualized workloads, using advanced packet processing 

pipelines that reflect and augment the capability of traditional switches. These switch technologies, based on software, 

form the base for network virtualization through interconnecting virtual machines and containers to the rest of the 

network infrastructure. At the same time, overlay technologies such as VXLAN and GENEVE solve the issue of 

limitations in legacy network segmentation by encapsulating Layer 2 frames in Layer 3 packets, establishing logical 

tunnels between endpoints independent of physical topology. As Koponen et al. illustrated in their multi-tenant 

datacenter research, this method allows independent evolution of physical and logical networks as well as scale demands 

many orders of magnitude beyond traditional networking limitations [2]. 

This paper examines the architecture, deployment, and operational characteristics of the virtual switches and network 

overlays within the existing SDN implementations. The awareness of these underlying technologies can assist the 

network architects and engineers in the creation, implementation, and operation of rich network infrastructure that is 

demanded in current cloud and enterprise environments. 
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2. The Architecture of Software-Defined Networks 

Software-Defined Networking is a network design paradigm shift. The traditional networks integrate both control 

(routing, policy) and data transfer within every network device. SDN dissociates these functions, creating a centralized 

control plane that deploys programs on a large number of data plane devices. The resulting decoupling is incredibly 

flexible, automatable, and scalable. 

The fundamental design of SDN centers on three fundamental planes, namely, the data, control, and management planes. 

This separation, as described by Kreutz et al., produces a "logically centralized control model" that shatters the vertical 

integration of legacy networks, in effect turning the underlying infrastructure into an extensible platform that can be 

manipulated with well-specified APIs [3]. Their in-depth survey outlines how this architecture allows network operators 

to provision sophisticated traffic management schemes without being bound by the limitations imposed by distributed 

control protocols such as OSPF or BGP. The centralized control plane has a global understanding of network resources, 

enabling optimized path choice, dynamic allocation of resources, and uniform policy application to heterogeneous 

infrastructure. 

In modern enterprise network virtualization platforms, this design is realized through hypervisor-level virtual switches 

and overlay networks that virtualize the physical network infrastructure. Collectively, these technologies form a rational 

network fabric capable of interconnecting multiple data centers with consistent policy enforcement and segmentation. 

Casado et al. introduced this architectural vision as the natural extension of SDN, stating that hypervisor-based switching 

offers the optimal insertion point for network virtualization [4]. Their article, "Fabric: A Retrospective on Evolving 

SDN," explains how edge virtualization using hypervisor switches together with a global control plane produces a scale-

out network abstraction layer. The model makes the physical network operate as a mere IP fabric while complex network 

services are handled at the edge, allowing organizations to have thousands of logical networks deployed without touching 

the underlying infrastructure. This design has been especially useful in multi-tenant environments where policy 

consistency and network isolation are overriding needs. 

 

Feature Traditional Networks Software-Defined Networks 

Control Plane Location Distributed (in each device) Centralized 

Policy Enforcement Device-by-device configuration Global application 

Network Visibility Limited to the local device Complete network view 

Programming Interface Vendor-specific CLIs Open APIs 

Service Implementation Throughout network Primarily at the network edge 

Configuration Model Manual, device-specific Automated, abstracted 

Scalability Approach Add more physical devices Logical network segmentation 

Traffic Engineering 
Based on distributed protocols 

(OSPF, BGP) 
Centralized optimization 

Multi-tenancy Support Limited by VLAN constraints Extensive through overlays 

Resource Allocation Static, predetermined Dynamic, on-demand 

Table 1: SDN Architectural Components vs. Traditional Networking [3, 4] 

3. Virtual Switches: The Network Interface of the Hypervisor 

 vSwitches act as the main network interface for virtualized workloads. In contrast to hardware switches, these are purely 

software-based, often deployed inside hypervisors or container runtimes. They provide Layer‑2 connectivity for virtual 

machines and containers and connect them into the broader network infrastructure. 

The internal structure of a virtual switch mirrors many features of physical switches: you have virtual port management, 

MAC forwarding tables, VLAN tagging, uplink aggregation, and more. Pfaff et al. describe how Open vSwitch (OVS) 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

________________________________________________________________________________________ 
481 

Vol: 2026 | Iss: 1 | 2026 
 

implements a flexible packet‑processing architecture using multiple flow tables that are programmable via OpenFlow and 

other control protocols [5]. The OVS design separates the fast path (kernel-level packet forwarding) from the slow path 

(feature-rich processing in userspace), achieving a balance between performance and extensibility. This split allows OVS 

to maintain forwarding state at scale (thousands of VMs) while adapting to changes such as live migrations and dynamic 

policy updates. 

Beyond those core capabilities, modern OVS deployments incorporate significant enhancements to address performance 

and scalability demands: 

● DPDK-based datapath: OVS can be built with DPDK support to operate fully in userspace, bypassing the 

kernel network stack for higher per‑packet performance [13]. 

● Multi-core scaling: In OVS 2.16 and above, new mechanisms for spreading PMD (Poll Mode Driver) threads 

across CPU cores improve throughput and reduce per-thread bottlenecks [14]. 

● Improved DPDK statistics: From OVS 2.17 onward, per-queue statistics for DPDK ports have been exposed 

via OVSDB, enabling finer-grained observability of how traffic is distributed across queues and cores [15]. 

● Hardware offload and NIC/DPUs acceleration: OVS supports offloading portions of its datapath to NIC 

hardware or DPU engines to reduce host CPU usage. For example, NVIDIA’s OVS-DOCA offload mode allows 

certain flows to be executed directly on NIC hardware while preserving compatibility with the OVS control 

plane [16]. 

● Kernel offload / hardware offload: OVS 2.8+ supports “OVS Hardware Offload,” in which data-plane 

operations are offloaded to NIC hardware (e.g. SR-IOV/VF representors) while leaving the control-plane logic 

in software [17] 

Virtual switches therefore have evolved to support dynamic, programmable forwarding tables that SDN controllers 

can update in real time across the network fabric. Pettit et al. examine how modern virtual switches balance 

performance, feature richness, and management simplicity, often leveraging hardware offload paths and hybrid 

datapaths to reconcile competing demands [6]. By enabling high-level match-action tables at the hypervisor edge, virtual 

switches reduce east–west traffic inside the data center and enforce security policies that follow workloads as they 

migrate across hosts. 

Feature 
Traditional Switch 

Implementation 

Open vSwitch 

Implementation 
Benefits 

Packet Processing Monolithic architecture 
Split fast-path (kernel) and 

slow-path (userspace) 

Improved performance 

with feature flexibility 

State Management 
Limited MAC table 

entries 

Support for thousands of VM 

states 

Accommodates large-

scale virtualization 

Policy Enforcement Network perimeter only Adjacent to workloads 
Reduced east-west traffic 

overhead 

Configuration Static, device-based Programmable via OpenFlow Dynamic policy updates 

Traffic Management 
VLAN-based (4094 

limit) 
Flow-based tables More granular control 

Hardware Integration Purpose-built ASICs 
Software with hardware 

offloading 

Balance of flexibility and 

performance 

Mobility Support Limited VM migration tracking 
Consistent policy during 

workload movement 

Forwarding Decision Fixed pipeline 
Programmable match-action 

tables 

Customizable packet 

handling 
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Scalability New hardware required Software-defined capacity Cost-effective expansion 

Edge Services Basic L2 forwarding 
Advanced security and 

routing 

Consolidated network 

functions 

Table 2: Virtual Switch Architecture: Kernel vs. Userspace Components [5, 6] 

4. Overlay Networks: Building Logical Topologies 

Network overlays address one of the hardest multi-tenant problems: how to build isolated network segments that may 

span physical boundaries. This is supported by technologies like VXLAN ( Virtual Extensible LAN ) and GENEVE ( 

Generic Network Virtualization Encapsulation ), which encapsulate Layer 2 Ethernet packets into Layer 3 packets. 

Such an encapsulation process creates logical tunnels among the virtual switches, such that the Layer 2 adjacency can be 

accomplished regardless of the underlying physical network structure. Mahalingam et al. specify the VXLAN 

architecture in RFC 7348, explaining how the protocol utilizes a 24-bit Virtual Network Identifier (VNI) to enable up to 

16 million logical networks on common infrastructure [7]. Their specification outlines how VXLAN encapsulation 

appends a header with the VNI and other control data to every frame, allowing the physical network to forward traffic 

between tunnel endpoints without mixing tenant network traffic. This design decouples the logical network topology seen 

by workloads from the physical network, solving the scalability constraint of traditional VLANs while still offering 

Layer 2 semantics to applications that need them. 

The technology behind overlay networks includes a number of key elements: encapsulation headers, tunnel endpoints, 

and tunnel management systems. Gross et al. cover these elements in their in-depth discussion of GENEVE, which takes 

the overlay approach further with increased protocol extensibility and flexibility [8]. Their publication outlines how 

tunnel endpoints, normally realized inside virtual switches, are responsible for decapsulation and encapsulation 

processing at the edge of the network. These endpoints share virtual-to-physical addressing mappings to direct traffic 

between workloads across physical locations. GENEVE's extensible header format supports the inclusion of rich routing 

and policy-enforced metadata, facilitating use cases beyond straightforward network segmentation. Tunnel setup and 

management by the tunnel management system creates and maintains the connectivity between endpoints, distributing 

information about workload reachability and location throughout the overlay network. This system commonly employs a 

centralized controller to spread configuration data and provide a common view of the network topology, allowing for 

unimpeded workload mobility and dynamic network reconfiguration without losing application connectivity. 

Feature VXLAN GENEVE Traditional VLAN 

Network Identifier 24-bit VNI Flexible length 12-bit VLAN ID 

Maximum Segments 16 million Extensible 4,094 

Encapsulation Type MAC-in-UDP Extensible format 802.1Q tag 

Header Size Fixed Variable Fixed 

Metadata Support Limited Extensive None 

Physical Network 

Requirement 
IP routing IP routing L2 adjacency 

Controller Integration Required for scale Required for scale Optional 

Workload Mobility 
Supported across 

subnets 
Supported across subnets Limited to the L2 domain 

Cross-Datacenter 

Support 
Native Native Requires L2 extension 

Protocol Extensibility Limited High None 

Standardization RFC 7348 IETF Draft IEEE 802.1Q 

Table 3: Overlay Protocol Segmentation Capabilities Comparison [7, 8] 
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5. Virtual Switch and Overlay Integration 

In data center production environments, virtual switches and overlay networks operate together to provide an end-to-end 

network fabric. The virtual switch maps VMs to the correct overlay segments based on control plane configuration. 

When a VM transmits traffic to a remote endpoint, the virtual switch encapsulates the frame in the correct overlay 

headers and sends it over the physical network to the destination tunnel endpoint. 

The combination of virtual switches and overlay networks forms a distributed system, which has to ensure consistency 

throughout potentially thousands of endpoints. Based on GeeksforGeeks' thorough review of network overlays in 

distributed systems, the combination brings a number of important benefits such as location independence, network 

isolation, and easy migration [9]. Their technical overview describes how overlay networks produce an abstraction layer 

that isolates the logical network view from the physical network topology, allowing workloads to communicate as if they 

were co-located on the same local network, independent of their physical location. When a virtual machine initiates 

communication, the virtual switch first checks if the destination is local or remote. For local destinations, traffic is simply 

switched within the host. For distant locations, the switch encapsulates, placing the overlay headers as required prior to 

sending the packet over the physical network. The encapsulation would entail inserting the overlay network identifier 

(e.g., the VNI in VXLAN) and other metadata into the packet in a way that it is delivered to the target destination 

endpoint without causing the networks of different tenants to interact. 

Such systems provide previous ARP (Address Resolution Protocol) and ND (Neighbor Discovery) information in IP 

discovery modules, which aid in advanced capabilities such as ARP suppression, IP spoofing control, and distributed 

routing. NVIDIA's tech blog explains how these features make network performance and security much better in 

virtualized systems [10]. Their reasoning describes ARP suppression as one of the most effective optimizations available 

in overlay networks, as it significantly minimizes broadcast traffic that otherwise would take up bandwidth throughout 

the entire fabric. By responding to ARP requests locally from distributed MAC-to-IP mappings stored by the control 

plane, virtual switches remove extraneous broadcast traffic while also serving up quicker responses to virtual machines. 

Likewise, IP spoofing detection takes advantage of the virtual switch's location at the network edge to check source 

addresses against anticipated values for malicious impersonation avoidance. Distributed routing is presented as especially 

useful in contemporary data centers where east-west traffic is the norm, allowing Layer 3 forwarding to be done at the 

virtual switch level without having to make the traffic travel through centralized physical routers. This ability decreases 

latency by a large margin and enhances overall network performance with steady policy enforcement via the centralized 

control plane. 

Function 
Traditional 

Implementation 

Integrated SDN 

Implementation 
Operational Impact 

VM-to-Network 

Assignment 

VLAN tagging at the 

access port 

Logical segment mapping in 

vSwitch 
Dynamic provisioning 

Traffic Path 

Determination 

Physical switch MAC 

tables 

Local/remote endpoint 

detection 
Optimized forwarding 

Broadcast Handling Network-wide flooding ARP suppression at the edge Reduced fabric traffic 

Security Enforcement Perimeter-based 
Source validation at the first 

hop 
Earlier threat prevention 

Layer 3 Routing 
Centralized router 

devices 
Distributed at the virtual switch 

Reduced traffic 

hairpinning 

Workload Mobility 
Complex VLAN/subnet 

changes 

Maintained overlay 

membership 
Seamless migration 

Multi-tenancy Limited by VLAN scope Overlay encapsulation isolation 
Scalable tenant 

separation 

Address Resolution Broadcast-based Control plane distribution Performance 
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optimization 

Traffic Engineering 
Physical path 

configuration 
Logical overlay path selection Simplified management 

Cross-DC 

Communication 
Extended L2 domains IP-based overlay tunneling Greater flexibility 

Policy Enforcement 
Network device 

configuration 
Control plane distribution Consistent application 

Failure Detection Physical link monitoring Tunnel endpoint monitoring Comprehensive visibility 

Table 4: Integrated Edge Services in Virtual Network Fabrics [9, 10] 

6. Scaling in Enterprise and Cloud Scenarios 

The above architecture allows for an unprecedented scale of network deployments. Huge cloud environments are easily 

supported with thousands of virtual networks running on shared infrastructure, each with its own isolated address space 

and security policies. 

This scalability is realized through a number of design principles, which are distributed data plane operations, centralized 

control, stateless design, and hierarchical management. As per Microsoft Research's insightful analysis of Azure's 

network infrastructure, these principles are necessary to run cloud networks at a global scale [11]. In their paper, they 

explain how the blend of local forwarding decisions by virtual switches and centralized policy definition via the control 

plane results in a highly scalable architecture. The distributed data plane supports per-host independent forwarding 

decisions from locally cached forwarding tables and policies, avoiding potential bottlenecks in centralized packet 

processing. Yet these distributed elements are kept in sync through a logically centralized control plane that preserves 

consistent policies across the system. This logically centralized control plane distributes configuration changes, updates 

forwarding tables, and preserves security policies being applied consistently wherever the workload resides. The authors 

mention that Azure employs a stateless design pattern wherever feasible, keeping the demand for complicated state 

synchronization between elements to a minimum and enhancing system dependability during fault conditions. 

Hierarchical administration also increases scalability by structuring network resources in logical domains that can be 

managed and scaled autonomously. Singh et al. explore this technique in their study of Google's Jupiter network 

topology, which hosts one of the globe's largest cloud computing environments [12]. Their work illustrates how 

hierarchical management facilitates controlled scaling through the decomposition of the network into manageable units 

that can be upgraded and expanded independently. This technique permits cloud providers to grow their networks 

incrementally without impacting current services, a requirement imperative to production deployments. The paper 

outlines the way that Google's deployment structures network resources into hierarchical tiers, with varying policies and 

management styles at each tier. This approach allows network operators to manage resources at suitable levels of 

abstraction, ranging from individual virtual networks through to whole data center fabrics. The authors point out how this 

design enables Google to have tens of thousands of virtual networks on its infrastructure, each with a distinct isolated 

address space and security policies. By integrating these design principles—distributed data plane, centralized control, 

stateless design, and hierarchical management—cloud providers can create network fabrics that scale up to millions of 

endpoints but have consistent performance and security. 

Conclusion 

The fundamental technologies that can be used to effect the transition to software-defined infrastructure are virtual 

switches and network overlays. These technologies remove the constraints imposed on the traditional networking 

methods by virtualizing network functions at the hypervisor edge and building logical topologies with encapsulation, and 

are compatible with existing infrastructure. It is the architectural patterns presented, including distributed data plane 

functionality coupled with centralized control, stateless design principles, and hierarchical control, that form the basis of 

a network fabric that can be scaled up to meet application needs in the present day. With organizations still working their 

way toward cloud-native architectures, it is becoming more and more important that network professionals are familiar 

with these basic elements. The advanced interaction of virtual switches, overlay networks, and the SDN control plane 

allows features never before achievable with traditional networking paradigms, including granular security policies that 
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accompany workloads as they move between hosts and dynamic network reconfigurations without affecting service 

availability. These technologies are going to stay as key parts of network design as infrastructure continues to grow more 

abstract, more automatable, and more scalable. 
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