
Computer Fraud and Security

ISSN (online): 1873-7056

__
479

Vol: 2026 | Iss: 1 | 2026

Virtual Switches and Network Overlays: The Foundation of Modern

SDNs

Rishi Kanth Alapati

University of Southern California, Los Angeles, USA

Abstract

Software-Defined Networking (SDN) has radically redefined the network architecture of the XXI century

by decoupling the control plane and the data plane, allowing unprecedented centralization, control, and

automation. This technical article explores two foundational building blocks that underlie modern SDN

deployments: virtual switches and network overlays. Virtual switches are software-defined Layer 2 devices

deployed inside hypervisors, which deliver connectivity to virtualized workloads and have programmable

forwarding tables that are responsive to centralized controllers. Multi-tenancy Network overlay

technologies, such as VXLAN and GENEVE, address multi-tenancy issues by applying an encapsulation

of Ethernet frames into IP packets to form logical network topologies that have no physical boundaries. A

combination of these technologies provides a highly scalable architecture in which thousands of isolated

virtual networks may co-exist on the shared physical infrastructure. It discusses the internal layouts of

these components and how they integrate with each other, and design principles are employed that

facilitate cloud-scale deployments. Through analysis of the interaction between distributed elements of

forwarding and centralized control, the article gives network engineers the necessary information to design

and operate modern cloud infrastructure.

Keywords: Network Virtualization, Software-Defined Networking, Overlay Networks, Virtual Switches,

Multi-Tenancy

1. Introduction

In the cloud-enabled infrastructure era, SDN has transformed network design, deployment, and management. Through

separating the control plane from the data plane, SDN supports centralized network control and policy compliance that

cannot be achieved by traditional networking methods. This technical article examines two pivotal building blocks

central to current SDN solutions: virtual switches and network overlays.

The emergence of SDN represents one of the most significant architectural shifts in networking over the past decade.

According to the Open Networking Foundation, this paradigm fundamentally changes network architecture by creating a

logical separation between network control functions and forwarding operations, making networks more dynamic,

manageable, and adaptable to the high-bandwidth requirements of modern applications [1]. Overlays and virtual switches

are now the foundation technologies facilitating such a shift, offering the flexibility and scale necessary to cloud

environments, yet still maintaining compatibility with existing infrastructure.

Virtual switches serve as the main network interface to virtualized workloads, using advanced packet processing

pipelines that reflect and augment the capability of traditional switches. These switch technologies, based on software,

form the base for network virtualization through interconnecting virtual machines and containers to the rest of the

network infrastructure. At the same time, overlay technologies such as VXLAN and GENEVE solve the issue of

limitations in legacy network segmentation by encapsulating Layer 2 frames in Layer 3 packets, establishing logical

tunnels between endpoints independent of physical topology. As Koponen et al. illustrated in their multi-tenant

datacenter research, this method allows independent evolution of physical and logical networks as well as scale demands

many orders of magnitude beyond traditional networking limitations [2].

This paper examines the architecture, deployment, and operational characteristics of the virtual switches and network

overlays within the existing SDN implementations. The awareness of these underlying technologies can assist the

network architects and engineers in the creation, implementation, and operation of rich network infrastructure that is

demanded in current cloud and enterprise environments.

Computer Fraud and Security

ISSN (online): 1873-7056

__
480

Vol: 2026 | Iss: 1 | 2026

2. The Architecture of Software-Defined Networks

Software-Defined Networking is a network design paradigm shift. The traditional networks integrate both control

(routing, policy) and data transfer within every network device. SDN dissociates these functions, creating a centralized

control plane that deploys programs on a large number of data plane devices. The resulting decoupling is incredibly

flexible, automatable, and scalable.

The fundamental design of SDN centers on three fundamental planes, namely, the data, control, and management planes.

This separation, as described by Kreutz et al., produces a "logically centralized control model" that shatters the vertical

integration of legacy networks, in effect turning the underlying infrastructure into an extensible platform that can be

manipulated with well-specified APIs [3]. Their in-depth survey outlines how this architecture allows network operators

to provision sophisticated traffic management schemes without being bound by the limitations imposed by distributed

control protocols such as OSPF or BGP. The centralized control plane has a global understanding of network resources,

enabling optimized path choice, dynamic allocation of resources, and uniform policy application to heterogeneous

infrastructure.

In modern enterprise network virtualization platforms, this design is realized through hypervisor-level virtual switches

and overlay networks that virtualize the physical network infrastructure. Collectively, these technologies form a rational

network fabric capable of interconnecting multiple data centers with consistent policy enforcement and segmentation.

Casado et al. introduced this architectural vision as the natural extension of SDN, stating that hypervisor-based switching

offers the optimal insertion point for network virtualization [4]. Their article, "Fabric: A Retrospective on Evolving

SDN," explains how edge virtualization using hypervisor switches together with a global control plane produces a scale-

out network abstraction layer. The model makes the physical network operate as a mere IP fabric while complex network

services are handled at the edge, allowing organizations to have thousands of logical networks deployed without touching

the underlying infrastructure. This design has been especially useful in multi-tenant environments where policy

consistency and network isolation are overriding needs.

Feature Traditional Networks Software-Defined Networks

Control Plane Location Distributed (in each device) Centralized

Policy Enforcement Device-by-device configuration Global application

Network Visibility Limited to the local device Complete network view

Programming Interface Vendor-specific CLIs Open APIs

Service Implementation Throughout network Primarily at the network edge

Configuration Model Manual, device-specific Automated, abstracted

Scalability Approach Add more physical devices Logical network segmentation

Traffic Engineering
Based on distributed protocols

(OSPF, BGP)
Centralized optimization

Multi-tenancy Support Limited by VLAN constraints Extensive through overlays

Resource Allocation Static, predetermined Dynamic, on-demand

Table 1: SDN Architectural Components vs. Traditional Networking [3, 4]

3. Virtual Switches: The Network Interface of the Hypervisor

 vSwitches act as the main network interface for virtualized workloads. In contrast to hardware switches, these are purely

software-based, often deployed inside hypervisors or container runtimes. They provide Layer‑2 connectivity for virtual

machines and containers and connect them into the broader network infrastructure.

The internal structure of a virtual switch mirrors many features of physical switches: you have virtual port management,

MAC forwarding tables, VLAN tagging, uplink aggregation, and more. Pfaff et al. describe how Open vSwitch (OVS)

Computer Fraud and Security

ISSN (online): 1873-7056

__
481

Vol: 2026 | Iss: 1 | 2026

implements a flexible packet‑processing architecture using multiple flow tables that are programmable via OpenFlow and

other control protocols [5]. The OVS design separates the fast path (kernel-level packet forwarding) from the slow path

(feature-rich processing in userspace), achieving a balance between performance and extensibility. This split allows OVS

to maintain forwarding state at scale (thousands of VMs) while adapting to changes such as live migrations and dynamic

policy updates.

Beyond those core capabilities, modern OVS deployments incorporate significant enhancements to address performance

and scalability demands:

● DPDK-based datapath: OVS can be built with DPDK support to operate fully in userspace, bypassing the

kernel network stack for higher per‑packet performance [13].

● Multi-core scaling: In OVS 2.16 and above, new mechanisms for spreading PMD (Poll Mode Driver) threads

across CPU cores improve throughput and reduce per-thread bottlenecks [14].

● Improved DPDK statistics: From OVS 2.17 onward, per-queue statistics for DPDK ports have been exposed

via OVSDB, enabling finer-grained observability of how traffic is distributed across queues and cores [15].

● Hardware offload and NIC/DPUs acceleration: OVS supports offloading portions of its datapath to NIC

hardware or DPU engines to reduce host CPU usage. For example, NVIDIA’s OVS-DOCA offload mode allows

certain flows to be executed directly on NIC hardware while preserving compatibility with the OVS control

plane [16].

● Kernel offload / hardware offload: OVS 2.8+ supports “OVS Hardware Offload,” in which data-plane

operations are offloaded to NIC hardware (e.g. SR-IOV/VF representors) while leaving the control-plane logic

in software [17]

Virtual switches therefore have evolved to support dynamic, programmable forwarding tables that SDN controllers

can update in real time across the network fabric. Pettit et al. examine how modern virtual switches balance

performance, feature richness, and management simplicity, often leveraging hardware offload paths and hybrid

datapaths to reconcile competing demands [6]. By enabling high-level match-action tables at the hypervisor edge, virtual

switches reduce east–west traffic inside the data center and enforce security policies that follow workloads as they

migrate across hosts.

Feature
Traditional Switch

Implementation

Open vSwitch

Implementation
Benefits

Packet Processing Monolithic architecture
Split fast-path (kernel) and

slow-path (userspace)

Improved performance

with feature flexibility

State Management
Limited MAC table

entries

Support for thousands of VM

states

Accommodates large-

scale virtualization

Policy Enforcement Network perimeter only Adjacent to workloads
Reduced east-west traffic

overhead

Configuration Static, device-based Programmable via OpenFlow Dynamic policy updates

Traffic Management
VLAN-based (4094

limit)
Flow-based tables More granular control

Hardware Integration Purpose-built ASICs
Software with hardware

offloading

Balance of flexibility and

performance

Mobility Support Limited VM migration tracking
Consistent policy during

workload movement

Forwarding Decision Fixed pipeline
Programmable match-action

tables

Customizable packet

handling

Computer Fraud and Security

ISSN (online): 1873-7056

__
482

Vol: 2026 | Iss: 1 | 2026

Scalability New hardware required Software-defined capacity Cost-effective expansion

Edge Services Basic L2 forwarding
Advanced security and

routing

Consolidated network

functions

Table 2: Virtual Switch Architecture: Kernel vs. Userspace Components [5, 6]

4. Overlay Networks: Building Logical Topologies

Network overlays address one of the hardest multi-tenant problems: how to build isolated network segments that may

span physical boundaries. This is supported by technologies like VXLAN (Virtual Extensible LAN) and GENEVE (

Generic Network Virtualization Encapsulation), which encapsulate Layer 2 Ethernet packets into Layer 3 packets.

Such an encapsulation process creates logical tunnels among the virtual switches, such that the Layer 2 adjacency can be

accomplished regardless of the underlying physical network structure. Mahalingam et al. specify the VXLAN

architecture in RFC 7348, explaining how the protocol utilizes a 24-bit Virtual Network Identifier (VNI) to enable up to

16 million logical networks on common infrastructure [7]. Their specification outlines how VXLAN encapsulation

appends a header with the VNI and other control data to every frame, allowing the physical network to forward traffic

between tunnel endpoints without mixing tenant network traffic. This design decouples the logical network topology seen

by workloads from the physical network, solving the scalability constraint of traditional VLANs while still offering

Layer 2 semantics to applications that need them.

The technology behind overlay networks includes a number of key elements: encapsulation headers, tunnel endpoints,

and tunnel management systems. Gross et al. cover these elements in their in-depth discussion of GENEVE, which takes

the overlay approach further with increased protocol extensibility and flexibility [8]. Their publication outlines how

tunnel endpoints, normally realized inside virtual switches, are responsible for decapsulation and encapsulation

processing at the edge of the network. These endpoints share virtual-to-physical addressing mappings to direct traffic

between workloads across physical locations. GENEVE's extensible header format supports the inclusion of rich routing

and policy-enforced metadata, facilitating use cases beyond straightforward network segmentation. Tunnel setup and

management by the tunnel management system creates and maintains the connectivity between endpoints, distributing

information about workload reachability and location throughout the overlay network. This system commonly employs a

centralized controller to spread configuration data and provide a common view of the network topology, allowing for

unimpeded workload mobility and dynamic network reconfiguration without losing application connectivity.

Feature VXLAN GENEVE Traditional VLAN

Network Identifier 24-bit VNI Flexible length 12-bit VLAN ID

Maximum Segments 16 million Extensible 4,094

Encapsulation Type MAC-in-UDP Extensible format 802.1Q tag

Header Size Fixed Variable Fixed

Metadata Support Limited Extensive None

Physical Network

Requirement
IP routing IP routing L2 adjacency

Controller Integration Required for scale Required for scale Optional

Workload Mobility
Supported across

subnets
Supported across subnets Limited to the L2 domain

Cross-Datacenter

Support
Native Native Requires L2 extension

Protocol Extensibility Limited High None

Standardization RFC 7348 IETF Draft IEEE 802.1Q

Table 3: Overlay Protocol Segmentation Capabilities Comparison [7, 8]

Computer Fraud and Security

ISSN (online): 1873-7056

__
483

Vol: 2026 | Iss: 1 | 2026

5. Virtual Switch and Overlay Integration

In data center production environments, virtual switches and overlay networks operate together to provide an end-to-end

network fabric. The virtual switch maps VMs to the correct overlay segments based on control plane configuration.

When a VM transmits traffic to a remote endpoint, the virtual switch encapsulates the frame in the correct overlay

headers and sends it over the physical network to the destination tunnel endpoint.

The combination of virtual switches and overlay networks forms a distributed system, which has to ensure consistency

throughout potentially thousands of endpoints. Based on GeeksforGeeks' thorough review of network overlays in

distributed systems, the combination brings a number of important benefits such as location independence, network

isolation, and easy migration [9]. Their technical overview describes how overlay networks produce an abstraction layer

that isolates the logical network view from the physical network topology, allowing workloads to communicate as if they

were co-located on the same local network, independent of their physical location. When a virtual machine initiates

communication, the virtual switch first checks if the destination is local or remote. For local destinations, traffic is simply

switched within the host. For distant locations, the switch encapsulates, placing the overlay headers as required prior to

sending the packet over the physical network. The encapsulation would entail inserting the overlay network identifier

(e.g., the VNI in VXLAN) and other metadata into the packet in a way that it is delivered to the target destination

endpoint without causing the networks of different tenants to interact.

Such systems provide previous ARP (Address Resolution Protocol) and ND (Neighbor Discovery) information in IP

discovery modules, which aid in advanced capabilities such as ARP suppression, IP spoofing control, and distributed

routing. NVIDIA's tech blog explains how these features make network performance and security much better in

virtualized systems [10]. Their reasoning describes ARP suppression as one of the most effective optimizations available

in overlay networks, as it significantly minimizes broadcast traffic that otherwise would take up bandwidth throughout

the entire fabric. By responding to ARP requests locally from distributed MAC-to-IP mappings stored by the control

plane, virtual switches remove extraneous broadcast traffic while also serving up quicker responses to virtual machines.

Likewise, IP spoofing detection takes advantage of the virtual switch's location at the network edge to check source

addresses against anticipated values for malicious impersonation avoidance. Distributed routing is presented as especially

useful in contemporary data centers where east-west traffic is the norm, allowing Layer 3 forwarding to be done at the

virtual switch level without having to make the traffic travel through centralized physical routers. This ability decreases

latency by a large margin and enhances overall network performance with steady policy enforcement via the centralized

control plane.

Function
Traditional

Implementation

Integrated SDN

Implementation
Operational Impact

VM-to-Network

Assignment

VLAN tagging at the

access port

Logical segment mapping in

vSwitch
Dynamic provisioning

Traffic Path

Determination

Physical switch MAC

tables

Local/remote endpoint

detection
Optimized forwarding

Broadcast Handling Network-wide flooding ARP suppression at the edge Reduced fabric traffic

Security Enforcement Perimeter-based
Source validation at the first

hop
Earlier threat prevention

Layer 3 Routing
Centralized router

devices
Distributed at the virtual switch

Reduced traffic

hairpinning

Workload Mobility
Complex VLAN/subnet

changes

Maintained overlay

membership
Seamless migration

Multi-tenancy Limited by VLAN scope Overlay encapsulation isolation
Scalable tenant

separation

Address Resolution Broadcast-based Control plane distribution Performance

Computer Fraud and Security

ISSN (online): 1873-7056

__
484

Vol: 2026 | Iss: 1 | 2026

optimization

Traffic Engineering
Physical path

configuration
Logical overlay path selection Simplified management

Cross-DC

Communication
Extended L2 domains IP-based overlay tunneling Greater flexibility

Policy Enforcement
Network device

configuration
Control plane distribution Consistent application

Failure Detection Physical link monitoring Tunnel endpoint monitoring Comprehensive visibility

Table 4: Integrated Edge Services in Virtual Network Fabrics [9, 10]

6. Scaling in Enterprise and Cloud Scenarios

The above architecture allows for an unprecedented scale of network deployments. Huge cloud environments are easily

supported with thousands of virtual networks running on shared infrastructure, each with its own isolated address space

and security policies.

This scalability is realized through a number of design principles, which are distributed data plane operations, centralized

control, stateless design, and hierarchical management. As per Microsoft Research's insightful analysis of Azure's

network infrastructure, these principles are necessary to run cloud networks at a global scale [11]. In their paper, they

explain how the blend of local forwarding decisions by virtual switches and centralized policy definition via the control

plane results in a highly scalable architecture. The distributed data plane supports per-host independent forwarding

decisions from locally cached forwarding tables and policies, avoiding potential bottlenecks in centralized packet

processing. Yet these distributed elements are kept in sync through a logically centralized control plane that preserves

consistent policies across the system. This logically centralized control plane distributes configuration changes, updates

forwarding tables, and preserves security policies being applied consistently wherever the workload resides. The authors

mention that Azure employs a stateless design pattern wherever feasible, keeping the demand for complicated state

synchronization between elements to a minimum and enhancing system dependability during fault conditions.

Hierarchical administration also increases scalability by structuring network resources in logical domains that can be

managed and scaled autonomously. Singh et al. explore this technique in their study of Google's Jupiter network

topology, which hosts one of the globe's largest cloud computing environments [12]. Their work illustrates how

hierarchical management facilitates controlled scaling through the decomposition of the network into manageable units

that can be upgraded and expanded independently. This technique permits cloud providers to grow their networks

incrementally without impacting current services, a requirement imperative to production deployments. The paper

outlines the way that Google's deployment structures network resources into hierarchical tiers, with varying policies and

management styles at each tier. This approach allows network operators to manage resources at suitable levels of

abstraction, ranging from individual virtual networks through to whole data center fabrics. The authors point out how this

design enables Google to have tens of thousands of virtual networks on its infrastructure, each with a distinct isolated

address space and security policies. By integrating these design principles—distributed data plane, centralized control,

stateless design, and hierarchical management—cloud providers can create network fabrics that scale up to millions of

endpoints but have consistent performance and security.

Conclusion

The fundamental technologies that can be used to effect the transition to software-defined infrastructure are virtual

switches and network overlays. These technologies remove the constraints imposed on the traditional networking

methods by virtualizing network functions at the hypervisor edge and building logical topologies with encapsulation, and

are compatible with existing infrastructure. It is the architectural patterns presented, including distributed data plane

functionality coupled with centralized control, stateless design principles, and hierarchical control, that form the basis of

a network fabric that can be scaled up to meet application needs in the present day. With organizations still working their

way toward cloud-native architectures, it is becoming more and more important that network professionals are familiar

with these basic elements. The advanced interaction of virtual switches, overlay networks, and the SDN control plane

allows features never before achievable with traditional networking paradigms, including granular security policies that

Computer Fraud and Security

ISSN (online): 1873-7056

__
485

Vol: 2026 | Iss: 1 | 2026

accompany workloads as they move between hosts and dynamic network reconfigurations without affecting service

availability. These technologies are going to stay as key parts of network design as infrastructure continues to grow more

abstract, more automatable, and more scalable.

References

[1] Open Networking Foundation, "Software-Defined Networking: The New Norm for Networks," 2012. [Online].

Available: https://opennetworking.org/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf

[2] Teemu Koponen et al., "Network virtualization in multi-tenant datacenters," NSDI'14: Proceedings of the 11th

USENIX Conference on Networked Systems Design and Implementation, 2014. [Online]. Available:

https://dl.acm.org/doi/10.5555/2616448.2616468

[3] Diego Kreutz et al., "Software-Defined Networking: A Comprehensive Survey," ResearchGate, 2014. [Online].

Available: https://www.researchgate.net/publication/262805723_Software-

Defined_Networking_A_Comprehensive_Survey

[4] Martín Casado et al., "Fabric: A Retrospective on Evolving SDN," ACM, 2012. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/2342441.2342459

[5] Ben Pfaff et al., "The Design and Implementation of Open vSwitch," in the Proceedings of the 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI ’15), 2015. [Online]. Available:

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf

[6] Justin Pettit et al., "Virtual Switching in an Era of Advanced Edges,". [Online]. Available:

https://www.openvswitch.org/support/papers/dccaves2010.pdf

[7] M. Mahalingam et al., "Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying

Virtualized Layer 2 Networks over Layer 3 Networks," RFC 7348, Aug. 2014. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7348

[8] J. Gross et al., "Geneve: Generic Network Virtualization Encapsulation," Internet Engineering Task Force, 2020.

[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-16

[9] GeeksforGeeks, "Network Overlays in Distributed Systems," 2025. [Online]. Available:

https://www.geeksforgeeks.org/system-design/network-overlays-in-distributed-systems/

[10] Rama Darbha, "Optimizing Your Data Center Network," NVIDIA Developer Blog, 2022. [Online]. Available:

https://developer.nvidia.com/blog/optimizing-your-data-center-network/

[11] Albert Greenberg et al., "VL2: A Scalable and Flexible Data Center Network," Microsoft, 2009. [Online].

Available: https://www.microsoft.com/en-us/research/publication/vl2-a-scalable-and-flexible-data-center-

network/

[12] Arjun Singh et al., "Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter

Network," SIGCOMM '15: Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication, 2015. [Online]. Available: https://dl.acm.org/doi/10.1145/2785956.2787508

[13] OpenvSwitch, "Open vSwitch with DPDK,". [Online]. Available:

https://docs.openvswitch.org/en/latest/intro/install/dpdk/

[14] Kevin Traynor, "Improve multicore scaling in Open vSwitch DPDK," Red Hat Developer, 2021. [Online].

Available: https://developers.redhat.com/articles/2021/11/19/improve-multicore-scaling-open-vswitch-dpdk

[15] David Marchand, "A statistics update in Open vSwitch user space datapath," Red Hat Developer, 2023. [Online].

Available: https://developers.redhat.com/articles/2023/09/18/statistics-update-open-vswitch-user-space-datapath

[16] Nvidia, "A statistics update in Open vSwitch user space datapath," DOCA Documentation v2.5.3 LTS. [Online].

Available: https://docs.nvidia.com/doca/archive/2-5-3/openvswitch+offload/index.html

[17] OVN Kubernetes, "OVS Acceleration with Kernel datapath,". [Online]. Available: https://ovn-

kubernetes.io/features/hardware-offload/ovs-kernel/

https://opennetworking.org/wp-content/uploads/2011/09/wp-sdn-newnorm.pdf
https://dl.acm.org/doi/10.5555/2616448.2616468
https://www.researchgate.net/publication/262805723_Software-Defined_Networking_A_Comprehensive_Survey
https://www.researchgate.net/publication/262805723_Software-Defined_Networking_A_Comprehensive_Survey
https://dl.acm.org/doi/pdf/10.1145/2342441.2342459
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://www.openvswitch.org/support/papers/dccaves2010.pdf
https://datatracker.ietf.org/doc/html/rfc7348
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-16
https://www.geeksforgeeks.org/system-design/network-overlays-in-distributed-systems/
https://developer.nvidia.com/blog/optimizing-your-data-center-network/
https://www.microsoft.com/en-us/research/publication/vl2-a-scalable-and-flexible-data-center-network/
https://www.microsoft.com/en-us/research/publication/vl2-a-scalable-and-flexible-data-center-network/
https://dl.acm.org/doi/10.1145/2785956.2787508
https://docs.openvswitch.org/en/latest/intro/install/dpdk/
https://developers.redhat.com/articles/2021/11/19/improve-multicore-scaling-open-vswitch-dpdk
https://developers.redhat.com/articles/2023/09/18/statistics-update-open-vswitch-user-space-datapath
https://docs.nvidia.com/doca/archive/2-5-3/openvswitch+offload/index.html
https://ovn-kubernetes.io/features/hardware-offload/ovs-kernel/
https://ovn-kubernetes.io/features/hardware-offload/ovs-kernel/

