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Abstract

Software-Defined Networking (SDN) has radically redefined the network architecture of the XXI century
by decoupling the control plane and the data plane, allowing unprecedented centralization, control, and
automation. This technical article explores two foundational building blocks that underlie modern SDN
deployments: virtual switches and network overlays. Virtual switches are software-defined Layer 2 devices
deployed inside hypervisors, which deliver connectivity to virtualized workloads and have programmable
forwarding tables that are responsive to centralized controllers. Multi-tenancy Network overlay
technologies, such as VXLAN and GENEVE, address multi-tenancy issues by applying an encapsulation
of Ethernet frames into IP packets to form logical network topologies that have no physical boundaries. A
combination of these technologies provides a highly scalable architecture in which thousands of isolated
virtual networks may co-exist on the shared physical infrastructure. It discusses the internal layouts of
these components and how they integrate with each other, and design principles are employed that
facilitate cloud-scale deployments. Through analysis of the interaction between distributed elements of
forwarding and centralized control, the article gives network engineers the necessary information to design
and operate modern cloud infrastructure.
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1. Introduction

In the cloud-enabled infrastructure era, SDN has transformed network design, deployment, and management. Through
separating the control plane from the data plane, SDN supports centralized network control and policy compliance that
cannot be achieved by traditional networking methods. This technical article examines two pivotal building blocks
central to current SDN solutions: virtual switches and network overlays.

The emergence of SDN represents one of the most significant architectural shifts in networking over the past decade.
According to the Open Networking Foundation, this paradigm fundamentally changes network architecture by creating a
logical separation between network control functions and forwarding operations, making networks more dynamic,
manageable, and adaptable to the high-bandwidth requirements of modern applications [1]. Overlays and virtual switches
are now the foundation technologies facilitating such a shift, offering the flexibility and scale necessary to cloud
environments, yet still maintaining compatibility with existing infrastructure.

Virtual switches serve as the main network interface to virtualized workloads, using advanced packet processing
pipelines that reflect and augment the capability of traditional switches. These switch technologies, based on software,
form the base for network virtualization through interconnecting virtual machines and containers to the rest of the
network infrastructure. At the same time, overlay technologies such as VXLAN and GENEVE solve the issue of
limitations in legacy network segmentation by encapsulating Layer 2 frames in Layer 3 packets, establishing logical
tunnels between endpoints independent of physical topology. As Koponen et al. illustrated in their multi-tenant
datacenter research, this method allows independent evolution of physical and logical networks as well as scale demands
many orders of magnitude beyond traditional networking limitations [2].

This paper examines the architecture, deployment, and operational characteristics of the virtual switches and network
overlays within the existing SDN implementations. The awareness of these underlying technologies can assist the
network architects and engineers in the creation, implementation, and operation of rich network infrastructure that is
demanded in current cloud and enterprise environments.
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2. The Architecture of Software-Defined Networks

Software-Defined Networking is a network design paradigm shift. The traditional networks integrate both control
(routing, policy) and data transfer within every network device. SDN dissociates these functions, creating a centralized
control plane that deploys programs on a large number of data plane devices. The resulting decoupling is incredibly
flexible, automatable, and scalable.

The fundamental design of SDN centers on three fundamental planes, namely, the data, control, and management planes.
This separation, as described by Kreutz et al., produces a "logically centralized control model" that shatters the vertical
integration of legacy networks, in effect turning the underlying infrastructure into an extensible platform that can be
manipulated with well-specified APIs [3]. Their in-depth survey outlines how this architecture allows network operators
to provision sophisticated traffic management schemes without being bound by the limitations imposed by distributed
control protocols such as OSPF or BGP. The centralized control plane has a global understanding of network resources,
enabling optimized path choice, dynamic allocation of resources, and uniform policy application to heterogeneous
infrastructure.

In modern enterprise network virtualization platforms, this design is realized through hypervisor-level virtual switches
and overlay networks that virtualize the physical network infrastructure. Collectively, these technologies form a rational
network fabric capable of interconnecting multiple data centers with consistent policy enforcement and segmentation.
Casado et al. introduced this architectural vision as the natural extension of SDN, stating that hypervisor-based switching
offers the optimal insertion point for network virtualization [4]. Their article, "Fabric: A Retrospective on Evolving
SDN," explains how edge virtualization using hypervisor switches together with a global control plane produces a scale-
out network abstraction layer. The model makes the physical network operate as a mere IP fabric while complex network
services are handled at the edge, allowing organizations to have thousands of logical networks deployed without touching
the underlying infrastructure. This design has been especially useful in multi-tenant environments where policy
consistency and network isolation are overriding needs.

Feature Traditional Networks Software-Defined Networks

Control Plane Location Distributed (in each device) Centralized

Policy Enforcement

Device-by-device configuration

Global application

Network Visibility

Limited to the local device

Complete network view

Programming Interface

Vendor-specific CLIs

Open APIs

Service Implementation

Throughout network

Primarily at the network edge

Configuration Model

Manual, device-specific

Automated, abstracted

Scalability Approach

Add more physical devices

Logical network segmentation

Traffic Engineering

Based on distributed protocols
(OSPF, BGP)

Centralized optimization

Multi-tenancy Support

Limited by VLAN constraints

Extensive through overlays

Resource Allocation

Static, predetermined

Dynamic, on-demand

Table 1: SDN Architectural Components vs. Traditional Networking [3, 4]

3. Virtual Switches: The Network Interface of the Hypervisor

vSwitches act as the main network interface for virtualized workloads. In contrast to hardware switches, these are purely
software-based, often deployed inside hypervisors or container runtimes. They provide Layer-2 connectivity for virtual
machines and containers and connect them into the broader network infrastructure.

The internal structure of a virtual switch mirrors many features of physical switches: you have virtual port management,
MAC forwarding tables, VLAN tagging, uplink aggregation, and more. Pfaff et al. describe how Open vSwitch (OVS)
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implements a flexible packet-processing architecture using multiple flow tables that are programmable via OpenFlow and
other control protocols [5]. The OVS design separates the fast path (kernel-level packet forwarding) from the slow path
(feature-rich processing in userspace), achieving a balance between performance and extensibility. This split allows OVS
to maintain forwarding state at scale (thousands of VMs) while adapting to changes such as live migrations and dynamic
policy updates.

Beyond those core capabilities, modern OVS deployments incorporate significant enhancements to address performance
and scalability demands:

e DPDK-based datapath: OVS can be built with DPDK support to operate fully in userspace, bypassing the
kernel network stack for higher per-packet performance [13].

e  Multi-core scaling: In OVS 2.16 and above, new mechanisms for spreading PMD (Poll Mode Driver) threads
across CPU cores improve throughput and reduce per-thread bottlenecks [14].

e Improved DPDK statistics: From OVS 2.17 onward, per-queue statistics for DPDK ports have been exposed
via OVSDB, enabling finer-grained observability of how traffic is distributed across queues and cores [15].

e Hardware offload and NIC/DPUs acceleration: OVS supports offloading portions of its datapath to NIC
hardware or DPU engines to reduce host CPU usage. For example, NVIDIA’s OVS-DOCA offload mode allows
certain flows to be executed directly on NIC hardware while preserving compatibility with the OVS control
plane [16].

e Kernel offload / hardware offload: OVS 2.8+ supports “OVS Hardware Offload,” in which data-plane
operations are offloaded to NIC hardware (e.g. SR-IOV/VF representors) while leaving the control-plane logic
in software [17]

Virtual switches therefore have evolved to support dynamic, programmable forwarding tables that SDN controllers
can update in real time across the network fabric. Pettit et al. examine how modern virtual switches balance
performance, feature richness, and management simplicity, often leveraging hardware offload paths and hybrid
datapaths to reconcile competing demands [6]. By enabling high-level match-action tables at the hypervisor edge, virtual
switches reduce east-west traffic inside the data center and enforce security policies that follow workloads as they
migrate across hosts.

Traditional Switch Open vSwitch

Feature . . Benefits
Implementation Implementation
. o . Split fast-path (kernel) and I d perf
Packet Processing Monolithic architecture plit fast-path (kernel) an rr.1prove per orTn'flr‘lce
slow-path (userspace) with feature flexibility

Limited MAC table Support for thousands of VM | Accommodates large-

State Management . . .
entries states scale virtualization

Reduced east-west traffic

Policy Enforcement Network perimeter only | Adjacent to workloads
overhead
Configuration Static, device-based Programmable via OpenFlow | Dynamic policy updates
VLAN-based (4094
Traffic Management limit) ased ( Flow-based tables More granular control
imi
. . Soft ith hard Bal f flexibility and
Hardware Integration Purpose-built ASICs © war.e With hardware alafice o LexIbtty an
offloading performance

Consistent policy during

Mobilit t Limit M migration tracki
obility Suppor imited VM migration tracking workload movement

Programmable match-action | Customizable packet

Forwarding Decision Fixed pipeline tables handling
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Scalability New hardware required | Software-defined capacity Cost-effective expansion

Consolidated network
functions

Advanced security and

Edge Services .
routing

Basic L2 forwarding

Table 2: Virtual Switch Architecture: Kernel vs. Userspace Components [5, 6]
4. Overlay Networks: Building Logical Topologies

Network overlays address one of the hardest multi-tenant problems: how to build isolated network segments that may
span physical boundaries. This is supported by technologies like VXLAN ( Virtual Extensible LAN ) and GENEVE (
Generic Network Virtualization Encapsulation ), which encapsulate Layer 2 Ethernet packets into Layer 3 packets.

Such an encapsulation process creates logical tunnels among the virtual switches, such that the Layer 2 adjacency can be
accomplished regardless of the underlying physical network structure. Mahalingam et al. specify the VXLAN
architecture in RFC 7348, explaining how the protocol utilizes a 24-bit Virtual Network Identifier (VNI) to enable up to
16 million logical networks on common infrastructure [7]. Their specification outlines how VXLAN encapsulation
appends a header with the VNI and other control data to every frame, allowing the physical network to forward traffic
between tunnel endpoints without mixing tenant network traffic. This design decouples the logical network topology seen
by workloads from the physical network, solving the scalability constraint of traditional VLANs while still offering
Layer 2 semantics to applications that need them.

The technology behind overlay networks includes a number of key elements: encapsulation headers, tunnel endpoints,
and tunnel management systems. Gross et al. cover these elements in their in-depth discussion of GENEVE, which takes
the overlay approach further with increased protocol extensibility and flexibility [8]. Their publication outlines how
tunnel endpoints, normally realized inside virtual switches, are responsible for decapsulation and encapsulation
processing at the edge of the network. These endpoints share virtual-to-physical addressing mappings to direct traffic
between workloads across physical locations. GENEVE's extensible header format supports the inclusion of rich routing
and policy-enforced metadata, facilitating use cases beyond straightforward network segmentation. Tunnel setup and
management by the tunnel management system creates and maintains the connectivity between endpoints, distributing
information about workload reachability and location throughout the overlay network. This system commonly employs a
centralized controller to spread configuration data and provide a common view of the network topology, allowing for
unimpeded workload mobility and dynamic network reconfiguration without losing application connectivity.

Feature VXLAN GENEVE Traditional VLAN
Network Identifier 24-bit VNI Flexible length 12-bit VLAN ID
Maximum Segments 16 million Extensible 4,094
Encapsulation Type MAC-in-UDP Extensible format 802.1Q tag
Header Size Fixed Variable Fixed
Metadata Support Limited Extensive None
Ezziiiiiiniiwork IP routing IP routing L2 adjacency

Controller Integration

Required for scale

Required for scale

Optional

Supported across

Workload Mobility Supported across subnets Limited to the L2 domain
subnets
-Datacent
Cross-Datacenter Native Native Requires L2 extension
Support
Protocol Extensibility Limited High None
Standardization RFC 7348 IETF Draft IEEE 802.1Q

Table 3: Overlay Protocol Segmentation Capabilities Comparison [7, 8]
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5. Virtual Switch and Overlay Integration

In data center production environments, virtual switches and overlay networks operate together to provide an end-to-end
network fabric. The virtual switch maps VMs to the correct overlay segments based on control plane configuration.
When a VM transmits traffic to a remote endpoint, the virtual switch encapsulates the frame in the correct overlay
headers and sends it over the physical network to the destination tunnel endpoint.

The combination of virtual switches and overlay networks forms a distributed system, which has to ensure consistency
throughout potentially thousands of endpoints. Based on GeeksforGeeks' thorough review of network overlays in
distributed systems, the combination brings a number of important benefits such as location independence, network
isolation, and easy migration [9]. Their technical overview describes how overlay networks produce an abstraction layer
that isolates the logical network view from the physical network topology, allowing workloads to communicate as if they
were co-located on the same local network, independent of their physical location. When a virtual machine initiates
communication, the virtual switch first checks if the destination is local or remote. For local destinations, traffic is simply
switched within the host. For distant locations, the switch encapsulates, placing the overlay headers as required prior to
sending the packet over the physical network. The encapsulation would entail inserting the overlay network identifier
(e.g., the VNI in VXLAN) and other metadata into the packet in a way that it is delivered to the target destination
endpoint without causing the networks of different tenants to interact.

Such systems provide previous ARP (Address Resolution Protocol) and ND (Neighbor Discovery) information in IP
discovery modules, which aid in advanced capabilities such as ARP suppression, IP spoofing control, and distributed
routing. NVIDIA's tech blog explains how these features make network performance and security much better in
virtualized systems [10]. Their reasoning describes ARP suppression as one of the most effective optimizations available
in overlay networks, as it significantly minimizes broadcast traffic that otherwise would take up bandwidth throughout
the entire fabric. By responding to ARP requests locally from distributed MAC-to-IP mappings stored by the control
plane, virtual switches remove extraneous broadcast traffic while also serving up quicker responses to virtual machines.
Likewise, IP spoofing detection takes advantage of the virtual switch's location at the network edge to check source
addresses against anticipated values for malicious impersonation avoidance. Distributed routing is presented as especially
useful in contemporary data centers where east-west traffic is the norm, allowing Layer 3 forwarding to be done at the
virtual switch level without having to make the traffic travel through centralized physical routers. This ability decreases
latency by a large margin and enhances overall network performance with steady policy enforcement via the centralized
control plane.

. Traditional Integrated SDN .
Function ] ] Operational Impact
Implementation Implementation
VM-to-Network VLAN tagging at the Logical segment mapping in

Dynamic provisioning

Assignment access port vSwitch

Traffic Path Physical switch MAC Local/remote endpoint . .
L . Optimized forwarding

Determination tables detection

Broadcast Handling Network-wide flooding ARP suppression at the edge Reduced fabric traffic

Security Enforcement

Perimeter-based

Source validation at the first
hop

Earlier threat prevention

. Centralized rout - . . Reduced traffi

Layer 3 Routing en. rattzed rodter Distributed at the virtual switch e. u.ce . Tt

devices hairpinning

. Complex VLAN/subnet | Maintained 1 L

Workload Mobility ompiex subne am alne. overay Seamless migration

changes membership

. - . . Scalable t t
Multi-tenancy Limited by VLAN scope | Overlay encapsulation isolation cala ,e enan
separation

Address Resolution Broadcast-based Control plane distribution Performance
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optimization
Physical path
Traffic Engineering ysiea pjd Logical overlay path selection | Simplified management
configuration
Cross-DC . . o
ross L Extended L2 domains IP-based overlay tunneling Greater flexibility
Communication

Network device

Policy Enforcement .
configuration

Control plane distribution Consistent application

Failure Detection Physical link monitoring | Tunnel endpoint monitoring Comprehensive visibility

Table 4: Integrated Edge Services in Virtual Network Fabrics [9, 10]
6. Scaling in Enterprise and Cloud Scenarios

The above architecture allows for an unprecedented scale of network deployments. Huge cloud environments are easily
supported with thousands of virtual networks running on shared infrastructure, each with its own isolated address space
and security policies.

This scalability is realized through a number of design principles, which are distributed data plane operations, centralized
control, stateless design, and hierarchical management. As per Microsoft Research's insightful analysis of Azure's
network infrastructure, these principles are necessary to run cloud networks at a global scale [11]. In their paper, they
explain how the blend of local forwarding decisions by virtual switches and centralized policy definition via the control
plane results in a highly scalable architecture. The distributed data plane supports per-host independent forwarding
decisions from locally cached forwarding tables and policies, avoiding potential bottlenecks in centralized packet
processing. Yet these distributed elements are kept in sync through a logically centralized control plane that preserves
consistent policies across the system. This logically centralized control plane distributes configuration changes, updates
forwarding tables, and preserves security policies being applied consistently wherever the workload resides. The authors
mention that Azure employs a stateless design pattern wherever feasible, keeping the demand for complicated state
synchronization between elements to a minimum and enhancing system dependability during fault conditions.

Hierarchical administration also increases scalability by structuring network resources in logical domains that can be
managed and scaled autonomously. Singh et al. explore this technique in their study of Google's Jupiter network
topology, which hosts one of the globe's largest cloud computing environments [12]. Their work illustrates how
hierarchical management facilitates controlled scaling through the decomposition of the network into manageable units
that can be upgraded and expanded independently. This technique permits cloud providers to grow their networks
incrementally without impacting current services, a requirement imperative to production deployments. The paper
outlines the way that Google's deployment structures network resources into hierarchical tiers, with varying policies and
management styles at each tier. This approach allows network operators to manage resources at suitable levels of
abstraction, ranging from individual virtual networks through to whole data center fabrics. The authors point out how this
design enables Google to have tens of thousands of virtual networks on its infrastructure, each with a distinct isolated
address space and security policies. By integrating these design principles—distributed data plane, centralized control,
stateless design, and hierarchical management—cloud providers can create network fabrics that scale up to millions of
endpoints but have consistent performance and security.

Conclusion

The fundamental technologies that can be used to effect the transition to software-defined infrastructure are virtual
switches and network overlays. These technologies remove the constraints imposed on the traditional networking
methods by virtualizing network functions at the hypervisor edge and building logical topologies with encapsulation, and
are compatible with existing infrastructure. It is the architectural patterns presented, including distributed data plane
functionality coupled with centralized control, stateless design principles, and hierarchical control, that form the basis of
a network fabric that can be scaled up to meet application needs in the present day. With organizations still working their
way toward cloud-native architectures, it is becoming more and more important that network professionals are familiar
with these basic elements. The advanced interaction of virtual switches, overlay networks, and the SDN control plane
allows features never before achievable with traditional networking paradigms, including granular security policies that
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accompany workloads as they move between hosts and dynamic network reconfigurations without affecting service
availability. These technologies are going to stay as key parts of network design as infrastructure continues to grow more
abstract, more automatable, and more scalable.
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