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Abstract:  

Accurate and effective identification of fish species is crucial for the processing and transportation of fish 

products. It enables efficient tracking and management of fish products, making it an essential aspect of the 

industry. Traditional methods of fish identification usually require expert knowledge within a particular 

domain. However, these methods can struggle to capture complex fish characteristics, particularly under 

varying lighting and angle conditions. In the article, an effective recognition algorithm named YOLO-FD is 

proposed. First, a novel feature extraction module has replaced the C2f module in YOLOv8, which effectively 

reduces the amount of model parameter calculations. The Efficient Multi-Scale Attention (EMA) applied in 

this study adeptly preserves spatial and channel information, fostering inter-regional interaction and enhancing 

feature extraction within the backbone network. The loss function in YOLOv8 was improved to address the 

sample imbalance problem. The YOLO-FD as an effective fish recognition algorithm addresses challenges 

faced by traditional methods simultaneously enhancing identification accuracy and offering lightweight 

improvement. 
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INTRODUCTION 

Identification of fish species is essential for the processing of fish products. In the past, fish recognition was 

mainly based on the extraction of fish morphological features by classifiers based on support vector machines 

(SVM) [1]. These methods are costly, unable to extract complex features, and have poor robustness. In the last 

few years, the swift advancement of computer hardware has provided the fundamental computing power for the 

operation of deep learning. The convolution neural networks have made outstanding contributions to the field of 

computer vision [2-4]. Therefore, neural networks are an excellent tool for fish identification, providing accurate 

and reliable results. Excitingly, there are a variety of representative algorithms based on convolutional neural 

networks to choose from, including the powerful R-CNN [5-7], the efficient YOLO [8-11], and the speedy SSD 

[12]. The application of convolutional neural networks significantly enhances the ability to extract fish features 

and exhibits excellent robustness. The R-CNN series algorithm is not suitable for real-time detection at fish 

processing and production sites because of its slow operation speed due to the characteristics of a two-stage 

algorithm. The YOLO series of algorithms are frequently employed for their exceptional target detection 

capabilities, serving as a renowned one-stage method. Yihunie et al. [13] constructed a classification detection 

model using MobileNetv3 and VGG16 as the backbone network and an SSD detection head for fish recognition. 

Cai et al. [14] replaced the backbone network of YOLOv3 with MobileNetv1 to successfully identify fish in 

aquaculture plants, but the generalization of the algorithm has not been verified. Li et al. [15] suggested a method 

for recognizing fish faces that employs rotating target detection, leading to enhanced precision. However, the 

method necessitates high hardware requirements and may not be suitable for practical detection. While numerous 

methods are available for target detection, the majority concentrate on enhancing detection accuracy. This, in turn, 

results in greater network complexity and increased hardware requirements. At fish processing and production 

sites, it is difficult to meet the hardware requirements described above, which makes it difficult to migrate mature 

identification methods directly. Thus it can be seen it is crucial to explore a target detection technique for edge 

devices. 
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To facilitate target detection on edge devices, this paper presents an optimized YOLOv8-based algorithm for 

detecting fish targets. The algorithm is evaluated using a fish image dataset in a real-world setting, demonstrating 

its effectiveness. The main contributions of this paper are in the following way:  

1. The partial convolution is introduced to improve the backbone network of YOLOv8 by drastically reducing the 

parameters and computational complexity.  

2. EMA was added to help the backbone focus on the key area and thus improve detection accuracy.  

3. The Slide weighting function has been subject to improve the loss function to address the sample imbalance 

problem.  

The remainder of this paper is structured in the following way: Section 2 mainly examines the methods utilized 

in the paper. Section 3 mainly introduces the details of the fish target identification algorithm. Section 4 mainly 

introduces the experimental findings and evaluation. Section 5 concludes the paper with a summary 

RELATED WORK 

YOLO 

YOLO (You Look Only Once) stands out as a paradigmatic one-stage object detection algorithm, approaching 

object detection as a regression problem. The method achieves concurrent localization and classification of objects 

by dividing the images into a mesh and making predictions within each mesh unit. The YOLO series distinguishes 

itself in real-time applications, courtesy of its singular forward propagation design, rendering it well-suited for 

scenarios requiring rapid object detection. YOLOv8 builds on the triumphs of its forerunners, introducing novel 

features and refinement to further enhance performance and portability. 

Partial Convolution 

Traditional convolution operates on all input tensor channels simultaneously via the kernel, which uniformly 

affects the feature maps of each channel. This concurrent convolution application may cause computational 

redundancy, especially when the information is redundant across multiple channels. The high computational 

complexity is a result of traditional convolution requiring consideration of all channels in the entire input during 

computation. 

The fundamental idea behind partial convolution [16] is to strategically involve a subset of the input tensor’s 

channels in convolution operations while leaving the remaining channels untouched. Additionally, the 

computational complexity of partial convolution is relatively lower since it only works on a portion of the 

channels. This approach effectively minimizes computational redundancy, especially in cases where there is a 

high channel correlation. 

Attention Mechanism 

The attention mechanism [17, 18] is a pivotal technology in the domain of deep learning that takes inspiration 

from the intricate workings of human vision and perception. It enables neural networks to prioritize essential 

elements during data processing, thereby bolstering the overall effectiveness and generalization capabilities of the 

algorithm. In contrast to uniformly processing all inputs, the attention mechanism allows the algorithm to 

selectively concentrate on the input sequence’s particular sections. By implementing a weight allocation 

mechanism, the significance of each input position can be dynamically learned. 

Efficient Multi-Scale Attention (EMA) [19] emerges as an efficient attention mechanism across space, ingeniously 

transforming certain channel dimensions into batch dimensions. This innovative approach preserves spatial 

information while concurrently mitigating computational overhead. The model can be made not only more 

efficient in weight computation but also able to maintain the same detection performance. 

Loss Function 

The issue of sample imbalance is a significant challenge in multi-class object detection tasks. In most cases, the 

quantity of hard samples is relatively less than the quantity of easy samples, contributing limited information to 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
104 

Vol: 2024 | Iss: 9 | 2024 

 

the model training. By increasing the focus on hard samples during training, and elevating their contribution to 

the model training process, there can be a notable enhancement in the identification reliability of the model. 

YOLOv8 employs a binary cross-entropy loss (BCELoss) function for classification loss. However, this function 

assigns equal weights to all classes, which is not favorable for handling hard samples. To work around this issue, 

the improved weight function is utilized to enhance the binary cross-entropy loss function. The improved weight 

function increases the weight assigned to hard samples, enhancing their contribution to the model, and alleviating 

the issue of sample imbalance. 

Fish Detection 

Traditional fish detection [1, 20] relies on experts manually extracting features and then using support vector 

machines or decision trees to classify fish based on these features. This method is costly, unable to extract complex 

features, and has poor robustness. In the last couple of years, the swift advancement of computer hardware has 

provided the fundamental computing power for the operation of deep learning. CNNs have also been applied to 

fish identification. While numerous methods based on CNNs are available for identification, the majority 

concentrate on enhancing detection accuracy. This, in turn, results in greater network complexity and increased 

hardware requirements. At fish processing and production sites, it is difficult to meet the hardware requirements 

described above, which makes it difficult to migrate mature identification methods directly. Deep learning-based 

fish recognition has improved detection accuracy, but it also requires high hardware requirements, which makes 

it difficult to be directly applied to real-world detection scenarios. In this paper, a lightweight fish detection and 

recognition algorithm is proposed, which greatly reduces the computational burden. 

METHODS 

The Overall Structure of YOLO-FD 

In this study, a lightweight fish identification algorithm YOLO-FD has been designed. Firstly, a novel lightweight 

module, called CPE, for the extraction of features has been designed. The overall architecture of YOLOv8 is 

retained while replacing the C2f module in the backbone and neck networks with the CPE module. The overall 

architecture of YOLO-FD can be seen in Figure 1. The loss function is replaced with an improved version by 

incorporating a dynamic weighting parameter. The CBS module is the fundamental module for carrying out 

convolutions. The CPE module is the proposed new feature extraction module. The full name of SPPF is Spatial 

Pyramid Pooling-Fast. This module can effectively avoid the issue of picture warping caused by clipping and 

scaling. Concat: The Feature fusion module. Upsample: The upsampling module. 

 

Figure 1. The structure of YOLO-FD 
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Improved Feature Extraction Module Design 

Lightweight convolution module 

The feature extraction module C2f in YOLOv8 includes two ordinary convolution operations with a kernel size 

of 3 ×3. While this structure allows for the extraction of richer features, it significantly increases computational 

overhead. The introduction of partial convolution (PConv) in this paper, as depicted in Figure 2, replaces the 

ordinary convolutions in the C2f module. For a feature map with input channels C, where Cp channels undergo 

convolution with a k × k kernel, and the remaining C − Cp channels undergo convolution with a 1 × 1 kernel. This 

substitution leads to a substantial reduction in the computational cost of the algorithm. 

 

Figure 2. The structure of PConv 

Taking the example of the first C2f module, let’s calculate the FLOPs. The input is a feature map of size 128 × 

160 × 160, where 128 is the number of channels, and 160x160 is the spatial dimension. Ordinary convolutions 

use 128 filters of size 3x3 to compute an output feature map of size 128 × 160 × 160. 

FLOPs for ordinary convolution are calculated as follows: 

160 × 160 × 1282 × 32 = 3.7 × 109 

The number of channels for PConv is taken as 32, that is, 32 channels are used for 3×3 convolution, and the 

remaining 96 channels are only used for 1×1 convolution. FLOPs for PConv is calculated as follows: 

160 × 160 × 128 × (32 × 32 + 128 − 32) = 1.3 × 109 

The FLOPs of PConv are reduced by about 65% compared to that of ordinary convolution. 

Efficient multi-scale attention 

In this paper, the introduction of the EMA aims to decrease the computational overhead while retaining the 

function of every channel. By transforming some of the channel dimensions into bulk dimensions and avoiding a 

form of dimensionality reduction through generic convolution, the model can be made not only more efficient in 

weight computation but also able to maintain the same detection performance. To enhance the algorithm’s feature 

extraction capabilities, the EMA module has been introduced within the Bottleneck module. 

The revised Bottleneck module takes the place of the original C2f module, resulting in the development of our 

proposed enhanced feature extraction module, referred to as CPE, as depicted in Figure 3. 

 

Figure 3. The structure of CPE 
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The reinforced loss function 

YOLOv8 employs a BCELoss function for classification loss. The Eq. (1) shows the binary cross-entropy loss as 

follows: 

𝐿(𝑝, 𝑡)  =  −[𝑡 ·  𝑙𝑜𝑔𝑝 +  (1 −  𝑡)  ·  𝑙𝑜𝑔(1 −  𝑝)]                                            (1) 

Parameter p represents the predicted probability of a sample, and t denotes the sample label, with values 0, 1. 

When t = 1, it signifies that the sample is classified as positive, and when t = 0, it indicates that the sample is 

classified as negative. In this paper, a dynamic weighting parameter α is introduced on top of the binary cross-

entropy loss. The parameter α, by assigning different weight coefficients to samples, enhances the contribution of 

hard samples to the model training. The design of the weight coefficients is inspired by the Slide weighting 

function and can be expressed by Eq. (2): 

𝛼 = {

1, 𝑝 < 𝜇

𝑒1−𝜇 , 𝜇 − 0.1 < 𝑝 < 𝜇

𝑒1−𝑝, 𝑝 > 𝜇

                                         (2) 

The parameter µ represents the average Intersection over Union (IoU) value of all bounding boxes and serves as 

the threshold for determining positive and negative samples. Samples with IoU values greater than the threshold 

are considered positive, while those with values below the threshold are considered negative. By increasing the 

weight of negative samples near the threshold, the model pays more attention to this subset of samples, 

maximizing their utilization in training the model. 

The final improved loss function is expressed as Eq. (3): 

𝐿𝑜𝑠𝑠(𝑝, 𝑡) = 𝛼𝐿(𝑝, 𝑡)                             (3) 

EXPERIMENT 

Experiment Settings 

Experimental environment 

To guarantee the consistency and robustness of the experimental results, all experiments were carried out in the 

same environment. All the experiments were carried out on a server equipped with one Intel(R) Core(R) i9-

10980XE CPU @ 1.70 GHz, two NVIDIA(R) GeForce RTX 4090 GPUs with 24 GB of video memory each, and 

128 GB of RAM. The operating system utilized was Ubuntu 20.04, with CUDA version 12.2 and CUDNN version 

8.9.2. Open-source machine learning libraries employed include PyTorch 2.0.1 and torchvision version 0.15.2, 

while the Python version used was 3.8.0. The hyperparameters for the specific training were confirmed as follows: 

The input image dimensions for the experiment were set to 640 × 640, the entire training process comprised 200 

epochs, and a batch size of 32 was used during training. 

Datasets 

  

  

Figure 4. Instances in the dataset 
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The dataset of this study includes 99 common economic fish species found in the South China Sea. Image samples 

were collected at the market using a variety of cell phones to match the real-world scenario better. All images are 

stored in RGB color space and JPG format. The same kind of fish was photographed from multiple angles to 

enhance its generalizability. The dataset is a collection of 19,680 images, divided into 99 distinct classes. An 

example of some of the fish in the dataset is shown in Figure 4. 

The LabelImg annotation tool was used to label the location of each fish in every image with a bounding box. The 

objective of this labeling technique is to label the fish class and its position in the image. 

To experiment, the dataset has been split into three sections: 80% to train, 10% to validate, and 10% to test. 

Evaluation metrics 

In this study, parameter size, FLOPs, AP50, AP75, and AP are employed as metrics to assess the model’s 

performance. Table 1 displays the available metrics. 

Table 1. Evaluation metrics 

Evaluation Metric Meaning 

AP AP at IoU = .50 : .05 : .95 

AP50 AP at IoU = .50 

AP75 AP at IoU = .75 

Parameter size the cumulative sum of parameters across each layer in the model 

FLOPs floating point of operations 

 

Baseline 

The five network models that Ultralytics formally offers are YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x. To identify the detection of fish accurately and effectively, five kinds of network models of YOLOv8 

are trained respectively, and the corresponding training results can be seen in Table 2. 

Table 2. Comparison of YOLO8 models with different scale sizes 

Model AP/% AP50/% AP75/% Param/M FLOPs/G 

YOLOv8n 82.1 89.8 87.6 3.2 8.7 

YOLOv8s 81.9 90.6 88.9 11.2 28.6 

YOLOv8m 82.5 90.7 89.1 25.9 78.9 

YOLOv8l 83.1 90.5 88.8 43.7 165.2 

YOLOv8x 82.0 90.6 88.9 68.2 257.8 

 

According to Table 2, it is apparent that YOLOv8l achieves the highest AP accuracy of 83.1%, followed by 

YOLOv8m at 82.5%. YOLOv8m also attains the highest AP50 and AP75 values of 90.7% and 88.9% respectively. 

In comparison, YOLOv8n, YOLOv8s, and YOLOv8x have lower AP, AP50, and AP75 accuracy scores than 

YOLOv8m. When comparing YOLOv8m with YOLOv8l, it has been discovered that the latter has approximately 

1.7 times the number of parameters as the former, and about 2.1 times the number of FLOPs. Nevertheless, the 

improvement in AP accuracy achieved by YOLOv8l in comparison to YOLOv8m is only 0.6% while its AP50 and 

AP75 accuracy rates are lower than YOLOv8m. 

By analyzing the network structures, variations in depth and width can be observed. YOLOv8n exhibits the 

smallest network, whereas the other four networks have expanded the network on this basis. Combined with the 

analysis in Table 2, it becomes evident that, as the depth and width of the network are increased, the model’s 

complexity and performance are not directly proportional. Furthermore, solely increasing the depth and width of 

the network does not lead to enhanced accuracy of fish detection. Instead, it increases the number of model 

parameters and computations required. In summary, considering the accuracy of detection and model size, this 

paper has opted to utilize YOLOv8m as the baseline model for the study. 

 

 



Computer Fraud and Security  

ISSN (online): 1873-7056 

 

__________________________________________________________________________________ 
108 

Vol: 2024 | Iss: 9 | 2024 

 

Ablation Experiment 

To demonstrate the varying impacts of the partial convolution, the EMA attention mechanism, and the improving 

loss function on the YOLOv8m model through data, the experiments were executed on the fish dataset. YOLOv8m 

was utilized as the baseline model, and the partial convolution, the EMA attention mechanism, and the improving 

loss function were gradually integrated into the model to create different enhanced models, which were then 

compared in experiments. The visualized training process of YOLO-FD can be seen in Figure 5. In the training 

process of YOLO-FD, it is evident that the loss function converges quickly, ensuring a smooth training trajectory. 

In the final 10 epochs, the curve experiences a sudden change due to the closing of data augmentation but 

ultimately achieves convergence. 

 

Figure 5. Training process 

The experimental findings are illustrated in Table 3 and Figure 6. By analyzing Table 3, it is evident that the 

addition of the partial convolution, the EMA attention mechanism, and improving loss function in sequence to the 

base network has led to a substantial advancement in the identification accuracies of the models. The YOLOv8m-

PConv has a large decrease in both the quantities of parameters and FLOPs compared to the baseline network. 

Table 3. Ablation results of different enhanced models 

Model AP/% AP50/% AP75/% Param/M FLOPs/G 

YOLOv8m 82.5 90.7 89.1 25.9 78.9 

YOLOv8m-PConv 82.6 90.9 89.3 16.7 50.1 

YOLOv8m-PConv-EMA 83.8 91.9 90.4 16.7 50.1 

YOLO-FD 84.1 92.4 90.8 16.7 52.8 

 

The reduction in parameters and FLOPs amounts to 35.5% and 36.5%, respectively. Instead, it is a marginal 

increase in accuracy. AP, AP50, and AP75 improved by 0.1%, 0.2%, and 0.2% respectively over the baseline 

network. The partial convolution diminishes the quantities of parameters in the model to a greater extent whilst 

maintaining accuracy and enhancing the efficiency of model execution. YOLOv8m-PConv-EMA incorporates the 

EMA attention mechanism, resulting in a small increase in FLOPs compared to YOLOv8m-PConv. However, the 

computational complexity remains clearly below that of the benchmark network. Meanwhile, the accuracy of 

YOLOv8m-PConv -EMA has improved significantly. This entails a 1.3%, 1.2%, and1.3% enhancement in 

comparison to the AP, AP50, and AP75 of the baseline network, and 1.2%, 1.0%, and 1.1% advancement concerning 

the AP, AP50, and AP75 of the YOLO8-PConv, correspondingly. The Slide weighting function is utilized to 

enhance the loss function of YOLOv8m-PConv-EMA, thereby resulting in the final YOLO-FD model proposed 
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within this paper. YOLO-FD shows no increase in model parameters or complexity compared to YOLOv8m-

PConv-EMA, yet boasts improved accuracy. The AP, AP50, and AP75 of YOLO-FD have improved by 0.3%, 0.5%, 

and 0.4%, respectively, compared to YOLOv8m-PConv-EMA; and by 1.6%, 1.7%, and 1.7%, respectively, when 

compared with the baseline network. The Slide weight function improves the imbalance of the samples without 

increasing the model complexity or quantities of model parameters, enhancing the algorithm’s accuracy. 

Figure 6 illustrates the heatmap of the detection results. YOLOv8m-PConv-EMA and YOLO-FD due to the added 

attention mechanism, the model is more focused on detecting the target and less focused on the environment. The 

detection confidence of YOLO-FD is also slightly higher than the other three models. 

 

(a) YOLOv8m                           (b) YOLOv8m-PConv 

 

(c) YOLOv8m-PConv-EMA                                 (d) YOLO-FD 

Figure 6. Detection result heatmap 

To summarize, the YOLOv8m model incorporates the PConv, the EMA attention mechanism, and the Slide 

weighting function, which results in the proposed YOLO-FD model achieving enhanced identification accuracy 

while reducing the model’s parameters and computation volume, diminishing the hardware requirements, and 

improving model portability. 

Comparison with Other Identification Models 

To further verify the YOLO-FD model’s identification efficiency, this section compares it with the mainstream 

YOLOv5, YOLOv6, YOLOv7, YOLOv8, and Faster RCNN target detection model in the current mainstream. 

Table 4 displays the identification results of all models on the same conditional. 

By analyzing Table 4, it is apparent that the YOLO-FD model exhibits noteworthy benefits regarding precision, 

quantity of model parameters, and FLOPs. Faster RCNN has a significant number of model parameters and 
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computations, but its detection accuracy is the lowest. Additionally, the AP, AP50, and AP75 of Faster RCNN are 

lower than those of YOLO-FD by 3.9%, 4.0%, and 4.0%, respectively. The model parameters and computational 

complexity of YOLOv6m and YOLOv7 are both lower than those of RCNN. Furthermore, they achieve overall 

detection accuracies that are better than RCNN. YOLOv5m compared to YOLOv6m and YOLOv7 achieves 

higher detection accuracy with fewer model parameters. Compared to the YOLO-FD model, YOLOv5m exhibits 

a decrease of 1.7%, 2.0%, and 2.0% in AP, AP50, and AP75, respectively, in terms of detection accuracy. 

Correspondingly, YOLOv5m has 26.9%more parameters, but 7.2% less computation, regarding model parameters 

and computation. 

Table 4. Comparison of different detection techniques 

Model AP/% AP50/% AP75/% Param/M FLOPs/G 

Faster RCNN 80.2 88.4 86.8 41.3 251.4 

YOLOv5m 82.4 90.4 88.8 21.2 49.0 

YOLOv6m 81.1 89.2 87.7 34.9 85.5 

YOLOv7 81.3 89.3 87.9 36.9 104.7 

YOLOv8m 82.5 90.7 89.1 25.9 78.9 

YOLO-FD 84.1 92.4 90.8 16.7 52.8 

 

In summary, when comparing the Faster RCNN, YOLOv5, YOLOv6, YOLOv7, and YOLOv8 models, the 

YOLO-FD model described in this paper enhances computational efficiency and maintains high detection 

accuracy. This suggests that the model focuses on effective target features, reduces redundant or ineffective 

features, and thus enhances network performance. 

CONCLUSION 

This study presents an efficient fish identification model on the basis of YOLOv8.By improving the backbone 

structure, the addition of an attention mechanism, and refining the loss function, the model achieved high 

prediction accuracy in experiments on the fish dataset with fewer parameters and computations than the other 

target detection algorithms, to demonstrate that it performs better than most. 

Our dataset consists mainly of clear and complete fish images, but unfortunately, there is a lack of images of 

occluded or mutilated fish. This lack of data may lead to a bias in the actual identification process of our algorithm. 

Therefore, to further refine the study, the plan is to add critical data images in future work. By introducing more 

occluded or mutilated fish images, more accurate simulation of recognition scenarios in the real world can be 

achieved, providing more challenging situations for the algorithm. Simultaneously, focus will be placed on 

improving the algorithm to enhance the recognition ability for these incomplete cases. Through these efforts, it is 

expected to enhance the practicality and robustness of the algorithm so that it can perform well in various complex 

situations. 
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